Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775128

RESUMO

The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.


Assuntos
Lactuca , Nitrogênio , Hidrolisados de Proteína , Lactuca/metabolismo , Lactuca/genética , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Nitrogênio/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Multiômica
2.
Sci Rep ; 14(1): 10710, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729985

RESUMO

Plant biostimulants are widely applied in agriculture for their ability to improve plant fitness. In the present work, the impact of Graminaceae-derived protein hydrolysate (P) and its lighter molecular fraction F3 (< 1 kDa) on lettuce plants, subjected to either no salt or high salt conditions, was investigated through the combination of metabolomics and transcriptomics. The results showed that both treatments significantly modulated the transcriptome and metabolome of plants under salinity stress, highlighting an induction of the hormonal response. Nevertheless, P and F3 also displayed several peculiarities. F3 specifically modulated the response to ethylene and MAPK signaling pathway, whereas P treatment induced a down-accumulation of secondary metabolites, albeit genes controlling the biosynthesis of osmoprotectants and antioxidants were up-regulated. Moreover, according with the auxin response modulation, P promoted cell wall biogenesis and plasticity in salt-stressed plants. Notably, our data also outlined an epigenetic control of gene expression induced by P treatment. Contrarily, experimental data are just partially in agreement when not stressed plants, treated with P or F3, were considered. Indeed, the reduced accumulation of secondary metabolites and the analyses of hormone pathways modulation would suggest a preferential allocation of resources towards growth, that is not coherent with the down-regulation of the photosynthetic machinery, the CO2 assimilation rate and leaves biomass. In conclusion, our data demonstrate that, although they might activate different mechanisms, both the P and F3 can result in similar benefits, as far as the accumulation of protective osmolytes and the enhanced tolerance to oxidative stress are concerned. Notably, the F3 fraction exhibits slightly greater growth promotion effects under high salt conditions. Most importantly, this research further corroborates that biostimulants' mode of action is dependent on plants' physiological status and their composition, underscoring the importance of investigating the bioactivity of the different molecular components to design tailored applications for the agricultural practice.


Assuntos
Regulação da Expressão Gênica de Plantas , Lactuca , Metabolômica , Lactuca/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Lactuca/genética , Metabolômica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino , Transcriptoma , Metaboloma/efeitos dos fármacos , Perfilação da Expressão Gênica , Multiômica
3.
Front Plant Sci ; 15: 1357316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533405

RESUMO

Introduction: High-throughput phenotyping technologies together with metabolomics analysis can speed up the development of highly efficient and effective biostimulants for enhancing crop tolerance to drought stress. The aim of this study was to examine the morphophysiological and metabolic changes in tomato plants foliarly treated with two protein hydrolysates obtained by enzymatic hydrolysis of vegetal proteins from Malvaceae (PH1) or Fabaceae (PH2) in comparison with a control treatment, as well as to investigate the mechanisms involved in the enhancement of plant resistance to repeated drought stress cycles. Methods: A phenotyping device was used for daily monitoring morphophysiological traits while untargeted metabolomics analysis was carried out in leaves of the best performing treatment based on phenotypic results.Results: PH1 treatment was the most effective in enhancing plant resistance to water stress due to the better recovery of digital biomass and 3D leaf area after each water stress event while PH2 was effective in mitigating water stress only during the recovery period after the first drought stress event. Metabolomics data indicated that PH1 modified primary metabolism by increasing the concentration of dipeptides and fatty acids in comparison with untreated control, as well as secondary metabolism by regulating several compounds like phenols. In contrast, hormones and compounds involved in detoxification or signal molecules against reactive oxygen species were downregulated in comparison with untreated control. Conclusion: The above findings demonstrated the advantages of a combined phenomics-metabolomics approach for elucidating the relationship between metabolic and morphophysiological changes associated with a biostimulant-mediated increase of crop resistance to repeated water stress events.

4.
J Sci Food Agric ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450779

RESUMO

BACKGROUND: Microgreens constitute dietary sources of bioactive compounds imparting numerous health benefits and enhancing sensory experience. They can be successfully cultivated in soilless systems where biostimulants can be easily integrated as seed-priming and post-germination agents improving the sustainability of a crop's final production. Compared to an untreated control, three priming agents (a commercial legume-derived protein hydrolysate (A250), a novel protein hydrolysate derived from peanut biomass (H250) and hydropriming (H2O)) were applied to Komatsuna and Mibuna seeds grown as microgreens and compared for their effects on yield parameters, mineral composition, ABTS and FRAP antioxidant capacity, carotenoid concentration and phenolic compounds. RESULTS: Significant effects of the main experimental factors and their interactions were identified on antioxidant capacity. Compared to the control and hydropriming, the highest ABTS and FRAP values were observed in Mibuna with the A250 and H250 treatments, respectively. Additionally, the H250 treatment increased the total concentrations of phenolic acid derivatives and flavonoid derivatives in Mibuna and Komatsuna, in tune with the levels of total flavonoids. Concerning mineral composition, the highest concentrations in both species were those of phosphorus and nitrate. CONCLUSION: These results highlight the potential of select plant-based biostimulants as priming agents to enhance the antioxidant capacity, nutrient content and bioactive compound content, thus further increasing their functional and nutritive quality. In the light of this, the possibility of reducing the application of fertilizers by promoting a green transition for the intensive production of microgreens could subsequently be evaluated. © 2024 Society of Chemical Industry.

5.
Front Plant Sci ; 14: 1238507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860245

RESUMO

Salinity or salt stress has deleterious effects on plant growth and development. It imposes osmotic, ionic, and secondary stresses, including oxidative stress on the plants and is responsible for the reduction of overall crop productivity and therefore challenges global food security. Plants respond to salinity, by triggering homoeostatic mechanisms that counter salt-triggered disturbances in the physiology and biochemistry of plants. This involves the activation of many signaling components such as SOS pathway, ABA pathway, and ROS and osmotic stress signaling. These biochemical responses are accompanied by transcriptional modulation of stress-responsive genes, which is mostly mediated by salt-induced transcription factor (TF) activity. Among the TFs, the multifaceted significance of WRKY proteins has been realized in many diverse avenues of plants' life including regulation of plant stress response. Therefore, in this review, we aimed to highlight the significance of salinity in a global perspective, the mechanism of salt sensing in plants, and the contribution of WRKYs in the modulation of plants' response to salinity stress. This review will be a substantial tool to investigate this problem in different perspectives, targeting WRKY and offering directions to better manage salinity stress in the field to ensure food security.

6.
Front Plant Sci ; 14: 1235686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692443

RESUMO

In addition to be used as a plant protection agent, copper (Cu) is also an essential micronutrient for plant growth and development. The bioavailability of Cu in agricultural systems can be limited due to its specific physical-chemical characteristics, leading to imbalances in plant production. To address this issue, an experimental trial was conducted on Genovese basil (Ocimum basilicum L.) in protected conditions to comparatively evaluate the effects of a vegetable protein hydrolysate (VPH), free Cu and Cu complexed with peptides and amino acids of vegetal origin (Cu and Cu-VPH, respectively), and a combination of VPH and Cu-VPH (VPH+Cu-VPH). The study showed that the combined application of VPH+Cu-VPH led to a significant average increase of 16.3% in fresh yield compared to the untreated Control and Cu treatment. This finding was supported by an improved photosynthetic performance in ACO2 (+29%) and Fv/Fm (+7%). Furthermore, mineral analysis using ICP OES demonstrated that Cu and Cu-VPH treatments determined, on average, a 15.1-, 16.9-, and 1.9-fold increase in Cu in plant tissues compared to control, VPH, and VPH+Cu-VPH treatments, respectively. However, the VPH+Cu-VPH treatment induced the highest contents of the other analyzed ions, except for P. In particular, Mg, Mn, Ca, and Fe, which take part in the constitution of chlorophylls, water splitting system, and photosynthetic electron transport chain, increased by 23%, 21%, 25%, and 32% compared to respective controls. Indeed, this improved the photosynthetic efficiency and the carboxylation capacity of the plants, and consequently, the physiological and productive performance of Genovese basil, compared to all other treatments and control. Consistently, the untargeted metabolomics also pointed out a distinctive modulation of phytochemical signatures as a function of the treatment. An accumulation of alkaloids, terpenoids, and phenylpropanoids was observed following Cu treatment, suggesting an oxidative imbalance upon metal exposure. In contrast, a mitigation of oxidative stress was highlighted in Cu-VPH and VPH+Cu-VPH, where the treatments reduced stress-related metabolites. Overall, these results highlight an interaction between Cu and VPH, hence paving the way towards the combined use of Cu and biostimulants to optimize agronomic interventions.

7.
Front Plant Sci ; 14: 1077140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875568

RESUMO

Plants have evolved diverse plant-species specific tolerance mechanisms to cope with salt stress. However, these adaptive strategies often inefficiently mitigate the stress related to increasing salinity. In this respect, plant-based biostimulants have gained increasing popularity since they can alleviate deleterious effects of salinity. Hence, this study aimed to evaluate the sensitivity of tomato and lettuce plants grown under high salinity and the possible protective effects of four biostimulants based on vegetal protein hydrolysates. Plants were set in a 2 × 5 factorial experimental design completely randomized with two salt conditions, no salt (0 mM) and high salt (120 mM for tomato or 80 mM for lettuce), and five biostimulant treatments (C: Malvaceae-derived, P: Poaceae-derived, D: Legume-derived commercial 'Trainer®', H: Legume-derived commercial 'Vegamin®', and Control: distilled water). Our results showed that both salinity and biostimulant treatments affected the biomass accumulation in the two plant species, albeit to different extents. The salinity stress induced a higher activity of antioxidant enzymes (e.g., catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase) and the overaccumulation of osmolyte proline in both lettuce and tomato plants. Interestingly, salt-stressed lettuce plants showed a higher accumulation of proline as compared to tomato plants. On the other hand, the treatment with biostimulants in salt-stressed plants caused a differential induction of enzymatic activity depending on the plant and the biostimulant considered. Overall, our results suggest that tomato plants were constitutively more tolerant to salinity than lettuce plants. As a consequence, the effectiveness of biostimulants in alleviating high salt concentrations was more evident in lettuce. Among the four biostimulants tested, P and D showed to be the most promising for the amelioration of salt stress in both the plant species, thereby suggesting their possible application in the agricultural practice.

8.
Plants (Basel) ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36840057

RESUMO

Salinity in water and soil is a critical issue for food production. Using biostimulants provides an effective strategy to protect crops from salinity-derived yield losses. The research supports the effectiveness of protein hydrolysate (PH) biostimulants based on their source material. A greenhouse experiment was performed on lettuce plants under control (0 mM NaCl) and high salinity conditions (30 mM NaCl) using the Trainer (T) and Vegamin (V) PH biostimulants. The recorded data included yield parameters, mineral contents, auxiliary pigments, and polyphenolics. The plant sample material was further analyzed to uncover the unique metabolomic trace of the two biostimulants. The results showed an increased yield (8.9/4.6%, T/V) and higher photosynthetic performance (14%) compared to control and salinity treatments. Increased yield in salinity condition by T compared to V was deemed significant due to the positive modulation in stress-protecting molecules having an oxidative stress relief effect such as lutein (39.9% 0 × T vs. 30 × V), ß-carotene (23.4% vs. V overall), and flavonoids (27.7% vs. V). The effects of PH biostimulants on the physio-chemical and metabolic performance of lettuce plants are formulation dependent. However, they increased plant growth under stress conditions, which can prove profitable.

9.
Front Plant Sci ; 14: 1337926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264017

RESUMO

The demand for high-quality strawberries continues to grow, emphasizing the need for innovative agricultural practices to enhance both yield and fruit quality. In this context, the utilization of natural products, such as biostimulants, has emerged as a promising avenue for improving strawberry production while aligning with sustainable and eco-friendly agricultural approaches. This study explores the influence of a bacterial filtrate (BF), a vegetal-derived protein hydrolysate (PH), and a standard synthetic auxin (SA) on strawberry, investigating their effects on yield, fruit quality, mineral composition and metabolomics of leaves and fruits. Agronomic trial revealed that SA and BF significantly enhanced early fruit yield due to their positive influence on flowering and fruit set, while PH treatment favored a gradual and prolonged fruit set, associated with an increased shoot biomass and sustained production. Fruit quality analysis showed that PH-treated fruits exhibited an increase of firmness and soluble solids content, whereas SA-treated fruits displayed lower firmness and soluble solids content. The ionomic analysis of leaves and fruits indicated that all treatments provided sufficient nutrients, with heavy metals within regulatory limits. Metabolomics indicated that PH stimulated primary metabolites, while SA and BF directly affected flavonoid and anthocyanin biosynthesis, and PH increased fruit quality through enhanced production of beneficial metabolites. This research offers valuable insights for optimizing strawberry production and fruit quality by harnessing the potential of natural biostimulants as viable alternative to synthetic compounds.

10.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430691

RESUMO

Increased soil salinity is one of the main concerns in agriculture and food production, and it negatively affects plant growth and crop productivity. In order to mitigate the adverse effects of salinity stress, plant biostimulants (PBs) have been indicated as a promising approach. Indeed, these products have a beneficial effect on plants by acting on primary and secondary metabolism and by inducing the accumulation of protective molecules against oxidative stress. In this context, the present work is aimed at comparatively investigating the effects of microbial (i.e., Azospirillum brasilense) and plant-derived biostimulants in alleviating salt stress in tomato plants by adopting a multidisciplinary approach. To do so, the morphological and biochemical effects were assessed by analyzing the biomass accumulation and root characteristics, the activity of antioxidant enzymes and osmotic stress protection. Furthermore, modifications in the metabolomic profiles of both leaves and root exudates were also investigated by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS). According to the results, biomass accumulation decreased under high salinity. However, the treatment with A. brasilense considerably improved root architecture and increased root biomass by 156% and 118% in non-saline and saline conditions, respectively. The antioxidant enzymes and proline production were enhanced in salinity stress at different levels according to the biostimulant applied. Moreover, the metabolomic analyses pointed out a wide set of processes being affected by salinity and biostimulant interactions. Crucial compounds belonging to secondary metabolism (phenylpropanoids, alkaloids and other N-containing metabolites, and membrane lipids) and phytohormones (brassinosteroids, cytokinins and methylsalicylate) showed the most pronounced modulation. Overall, our results suggest a better performance of A. brasilense in alleviating high salinity than the vegetal-derived protein hydrolysates herein evaluated.


Assuntos
Azospirillum brasilense , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Azospirillum brasilense/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Estresse Salino
11.
Plants (Basel) ; 11(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36079702

RESUMO

Protein hydrolysates (PHs) are a prominent category of plant biostimulants, mainly constituted of amino acids, oligopeptides and polypeptides, obtained by partial hydrolysis of animal or plant protein sources. Despite scientific evidence supporting the biostimulant action of PHs on vegetables, the morphological, physiological, and shelf-life performances underlying the PH action on cut flowers are still poorly explored. Accordingly, the aim of this research is to assess the effects of three commercial biostimulants, one animal PH (PH A, Hicure®) and two plant PHs (PH V1, Trainer® and PH V2, Vegamin©), on two chrysanthemum (Chrysanthemum morifolium) cultivars (Pinacolada and Radost). In both cultivars, only the plant-derived PH (V1 and V2) treatments recorded significantly higher fresh plant biomass than the control (on average +18%, in both cultivars). The foliar application of the vegetal-derived PHs but not the animal one, particularly in Pinacolada, improved the status of plants, stimulating stem elongation and the apical flower diameter. In Pinacolada, applications with PH V1 resulted in a significant increase in nitrate and P concentration in leaves and Ca content in flowers compared with the control (+43%, +27%, and +28% for nitrate, P, and Ca, respectively). In Radost, PH A and PH V2 applications caused a significant reduction in nitrate concentration in both leaves and flowers compared with the control. One week after harvest, in both cultivars, PH A applications caused flower stems to wilt faster than the control. In contrast, plants treated with PH V1 revealed significantly slower flower stem senescence compared to the control. Flower wilting during vase life was correlated to a decrease in the K-to-Na ratio in flowers due to an inability to transport K to the flowers from the leaves rather than an increase in Na in the flowers themselves.

12.
Plants (Basel) ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956509

RESUMO

A promising strategy for sustainably increasing the quality and yield of horticultural products is the use of natural plant biostimulants. In this work, through a greenhouse experiment, we evaluated the effect of a legume-derived biostimulant at three dose treatments (0.0 control, 2.5 mL L-1, and 5.0 mL L-1) on the yield performance, nutrients traits, leaf anatomical traits, gas exchanges, and carbon photosynthetic assimilation of greenhouse lettuce. The lettuce plants were foliar sprayed every 7 days for 5 weeks. The application of plant biostimulant, at both lower and higher dosages, increased the nutrient use efficiency, root dry weight, and leaf area. However, it is noteworthy that the 5.0 mL L-1 dose enhanced photosynthetic activity in the early phase of growth (15 DAT), thus supplying carbon skeletons useful for increasing the number of leaves and their efficiency (higher SPAD), and for boosting nutrient uptake (P, S, and K) and transport to leaves, while the 2.5 mL L-1 dose exerted specific effects on roots, increasing their dimension and enabling them to better use nitrate and Ca. A higher dose of biostimulant application might find its way in shorter growing cycle, thus presenting new horizons for new lines of research in baby leaves production.

13.
Plants (Basel) ; 11(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890476

RESUMO

Salinity stress is a major constraint to sustainable crop production due to its adverse impact on crop growth, physiology, and productivity. As potato is the fourth most important staple food crop, enhancing its productivity is necessary to ensure food security for the ever-increasing population. Identification and cultivation of salt-tolerant potato genotypes are imperative mitigating strategies to cope with stress conditions. For this purpose, fifty-three varieties of potato were screened under control and salt stress conditions for growth and yield-related traits during 2020. Salt stress caused a mean reduction of 14.49%, 8.88%, and 38.75% in plant height, stem numbers, and tuber yield, respectively in comparison to control. Based on percent yield reduction, the genotypes were classified as salt-tolerant (seven genotypes), moderately tolerant (thirty-seven genotypes), and salt-sensitive genotypes (nine genotypes). Seven salt-tolerant and nine salt-sensitive genotypes were further evaluated to study their responses to salinity on targeted physiological, biochemical, and ionic traits during 2021. Salt stress significantly reduced the relative water content (RWC), membrane stability index (MSI), photosynthesis rate (Pn), transpiration rate (E), stomatal conductance, and K+/Na+ ratio in all the sixteen genotypes; however, this reduction was more pronounced in salt-sensitive genotypes compared to salt-tolerant ones. The better performance of salt-tolerant genotypes under salt stress was due to the strong antioxidant defense system as evidenced by greater activity of super oxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) and better osmotic adjustment (accumulation of proline). The stepwise regression approach identified plant height, stem numbers, relative water content, proline content, H2O2, POX, tuber K+/Na+, and membrane stability index as predominant traits for tuber yield, suggesting their significant role in alleviating salt stress. The identified salt-tolerant genotypes could be used in hybridization programs for the development of new high-yielding and salt-tolerant breeding lines. Further, these genotypes can be used to understand the genetic and molecular mechanism of salt tolerance in potato.

14.
Front Plant Sci ; 13: 906686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677231

RESUMO

The floating raft constitutes a valuable system for growing herbs as it effectuates high yield and prime functional quality. However, the pressing need for advancing sustainability in food production dictates the reduction of chemical fertilizer inputs in such intensive production schemes through innovative cultivation practices. In this perspective, our work appraised the productive and qualitative responses of two "Genovese" basil genotypes (Eleonora and Italiano Classico) grown in a floating raft system with nutrient solutions of varied electrical conductivity (EC; 2 and 1 dS m-1) combined with root application of protein hydrolysate biostimulant at two dosages (0.15 and 0.3 0 ml L-1 of Trainer®). The phenolic composition, aromatic profile, and antioxidant activities (ABTS, DPPH, and FRAP) of basil were determined by UHPLC/HRMS, GC/MS, and spectrophotometry, respectively. "Eleonora" demonstrated higher number of leaves (37.04 leaves per plant), higher fresh yield (6576.81 g m-2), but lower polyphenol concentration (1440.81 µg g-1 dry weight) compared to "Italiano Classico." The lower EC solution (1 dS m-1) increased total phenols (+32.5%), ABTS, DPPH, and FRAP antioxidant activities by 33.2, 17.1, and 15.8%, respectively, and decreased linalool relative abundance by 5.5%. Biostimulant application improved crop performance and increased total phenolic concentration in both genotypes, with the highest phenolic concentration (1767.96 µg g-1 dry weight) registered at the lowest dose. Significant response in terms of aromatic profile was detected only in "Eleonora." Our results demonstrate that the application of protein hydrolysate may compensate for reduced strength nutrient solution by enhancing yield and functional quality attributes of "Genovese" basil for pesto.

15.
Plants (Basel) ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161239

RESUMO

Seed quality is an important aspect of the modern cultivation strategies since uniform germination and high seedling vigor contribute to successful establishment and crop performance. To enhance germination, beneficial microbes belonging to arbuscular mycorrhizal fungi, Trichoderma spp., rhizobia and other bacteria can be applied to seeds before sowing via coating or priming treatments. Their presence establishes early relationships with plants, leading to biostimulant effects such as plant-growth enhancement, increased nutrient uptake, and improved plant resilience to abiotic stress. This review aims to highlight the most significant results obtained for wheat, maize, rice, soybean, canola, sunflower, tomato, and other horticultural species. Beneficial microorganism treatments increased plant germination, seedling vigor, and biomass, as well as overcoming seed-related limitations (such as abiotic stress), both during and after emergence. The results are generally positive, but variable, so more scientific information needs to be acquired for different crops and cultivation techniques, with considerations to different beneficial microbes (species and strains) and under variable climate conditions to understand the effects of seed treatments.

16.
Antioxidants (Basel) ; 12(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36670969

RESUMO

Protein hydrolysate biostimulants are environmentally friendly options for the reduction of nitrogen input, but their plant growth-promoting mechanisms are still not completely unveiled. Here, to put the "signaling peptide theory" to the test, a greenhouse experiment was undertaken using low (1 mM) and optimal (8 mM) NO3-treated butterhead lettuce and three molecular fractions (PH1 (>10 kDa), PH2 (1−10 kDa) and PH3 (<10 kDa) fractions), in addition to the whole product Vegamin®: PH, in a randomized block design. PH1 and PH3 significantly increased fresh yield (+8%) under optimal (lighter leaves), but not under low (darker leaves) NO3 conditions. Total ascorbic acid, lutein and ß-carotene increased with PH3, and disinapoylgentobiose and kaempferol-3-hydroxyferuloyl-sophorosie-7-glucoside content increased with PH (whole/fractions) treatments, particularly under low NO3 conditions. The complete hydrolysate and analyzed peptide fractions have differential biostimulatory effects, enhancing the growth and nutritional quality of lettuce.

17.
Pathogens ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201640

RESUMO

Salinity in water and soil is one of the major environmental factors limiting the productivity of agronomic and horticultural crops. In basil (Ocimum basilicum L., Lamiaceae) and other Ocimum species, information on the plant response to mild salinity levels, often induced by the irrigation or fertigation systems, is scarce. In the present work, we tested the effectiveness of a microbial-based biostimulant containing two strains of arbuscular mycorrhiza fungi (AMF) and Trichoderma koningii in sustaining greenhouse basil yield traits, subjected to two mild salinity stresses (25 mM [low] and 50 mM [high] modulated by augmenting the fertigation osmotic potential with NaCl) compared to a non-stressed control. The impact of salinity stress was further appraised in terms of plant physiology, morphological ontogenesis and composition in polyphenols and volatile organic compounds (VOC). As expected, increasing the salinity of the solution strongly depressed the plant yield, nutrient uptake and concentration, reduced photosynthetic activity and leaf water potential, increased the Na and Cl and induced the accumulation of polyphenols. In addition, it decreased the concentration of Eucalyptol and ß-Linalool, two of its main essential oil constituents. Irrespective of the salinity stress level, the multispecies inoculum strongly benefited plant growth, leaf number and area, and the accumulation of Ca, Mg, B, p-coumaric and chicoric acids, while it reduced nitrate and Cl concentrations in the shoots and affected the concentration of some minor VOC constituents. The benefits derived from the inoculum in term of yield and quality harnessed different mechanisms depending on the degree of stress. under low-stress conditions, the inoculum directly stimulated the photosynthetic activity after an increase of the Fe and Mn availability for the plants and induced the accumulation of caffeic and rosmarinic acids. under high stress conditions, the inoculum mostly acted directly on the sequestration of Na and the increase of P availability for the plant, moreover it stimulated the accumulation of polyphenols, especially of ferulic and chicoric acids and quercetin-rutinoside in the shoots. Notably, the inoculum did not affect the VOC composition, thus suggesting that its activity did not interact with the essential oil biosynthesis. These results clearly indicate that beneficial inocula constitute a valuable tool for sustaining yield and improving or sustaining quality under suboptimal water quality conditions imposing low salinity stress on horticultural crops.

18.
Front Plant Sci ; 12: 626301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168660

RESUMO

The use of plant biostimulants contributes to more sustainable and environmentally friendly farming techniques and offers a sustainable alternative to mitigate the adverse effects of stress. Protein hydrolysate-based biostimulants have been described to promote plant growth and reduce the negative effect of abiotic stresses in different crops. However, limited information is available about their mechanism of action, how plants perceive their application, and which metabolic pathways are activating. Here we used a multi-trait high-throughput screening approach based on simple RGB imaging and combined with untargeted metabolomics to screen and unravel the mode of action/mechanism of protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions (0, 75, or 150 mM NaCl). Eleven protein hydrolysates from different protein sources were used as priming agents in Arabidopsis seeds in three different concentrations (0.001, 0.01, or 0.1 µl ml-1). Growth and development-related traits as early seedling establishment, growth response under stress and photosynthetic performance of the plants were dynamically scored throughout and at the end of the growth period. To effectively classify the functional properties of the 11 products a Plant Biostimulant Characterization (PBC) index was used, which helped to characterize the activity of a protein hydrolysate based on its ability to promote plant growth and mitigate stress, and to categorize the products as plant growth promoters, growth inhibitors and/or stress alleviator. Out of 11 products, two were identified as highly effective growth regulators and stress alleviators because they showed a PBC index always above 0.51. Using the untargeted metabolomics approach, we showed that plants primed with these best performing biostimulants had reduced contents of stress-related molecules (such as flavonoids and terpenoids, and some degradation/conjugation compounds of phytohormones such as cytokinins, auxins, gibberellins, etc.), which alleviated the salt stress response-related growth inhibition.

19.
Food Chem ; 359: 129961, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33945985

RESUMO

The effects of different fertilisation treatments with arbuscular mycorrhizal fungi (AMF) inoculation on AMF root colonisation, fruit yield, nutrient and total phenol contents, volatile compound composition, and sensory attributes of tomato (Solanum lycopersicum L.) were investigated. Mineral, organic, and mineral + organic fertiliser application positively affected tomato yield (35%-50%) and phosphorus concentration (24%-29%) compared with controls. AMF application had a significant impact on the total nitrogen (+9%), manganese (+12%), and hydrophilic phenol (+8%) contents in the fruit. Volatile compounds were affected by the interactive effects of fertilisation and AMF application. The response of tomato fruit sensory quality indicators was relatively modest, with only a few sensory characteristics affected to a lesser extent. Although tomato showed susceptibility to field-native AMF, particular combinations of fertilisation and AMF inoculation were more effective at improving the quality parameters of tomatoes under field conditions applied in this study.


Assuntos
Fertilizantes , Micorrizas/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia
20.
Plants (Basel) ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805215

RESUMO

Sweet cherry is a high value crop and the economic success of its cultivation depends not only on yield but also on fruit visual and nutritional quality attributes that influence consumer acceptability, as well as on fruit post-harvest performance and resistance to cracking. During the last few decades, cherry growers have tried to achieve these goals through exogenous applications of synthetic plant hormones and/or nutrients, but there is growing concern about the sustainability of the extensive use of these compounds in agriculture. For this reason, there is increasing interest in the possible adoption of different classes of biostimulants as sustainable alternatives to plant growth regulators. This research aimed to study the impact of foliar application of a novel tropical-plant extract, performed between full bloom and fruit set, on the yield and fruit quality of two important commercial sweet cherry cultivars, Kordia and Regina. The experimental design included a commercial control involving the application of a cytokinin promoter. In both cultivars, the tropical-plant extract induced significant increases in fruit yield. In addition, in the cultivar Kordia, the tropical-plant extract enhanced fruit calcium concentration, soluble solids content, flesh firmness, and skin color by 26.2%, 11.8%, 6.7%, and 12.0% (of fruits with mahogany skin color), respectively. Our results suggest that the tropical-plant extract tested as a biostimulant may be a sustainable and effective alternative to the exogenous application of synthetic hormones for sweet cherry cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...