Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Chem Phys ; 18(15): 11097-11124, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33868395

RESUMO

The precise contribution of the two major sinks for anthropogenic CO2 emissions, terrestrial vegetation and the ocean, and their location and year-to-year variability are not well understood. Top-down estimates of the spatiotemporal variations in emissions and uptake of CO2 are expected to benefit from the increasing measurement density brought by recent in situ and remote CO2 observations. We uniquely apply a batch Bayesian synthesis inversion at relatively high resolution to in situ surface observations and bias-corrected GOSAT satellite column CO2 retrievals to deduce the global distributions of natural CO2 fluxes during 2009-2010. Our objectives include evaluating bottom-up prior flux estimates, assessing the value added by the satellite data, and examining the impacts of inversion technique and assumptions on posterior fluxes and uncertainties. The GOSAT inversion is generally better constrained than the in situ inversion, with smaller posterior regional flux uncertainties and correlations, because of greater spatial coverage, except over North America and high-latitude ocean. Complementarity of the in situ and GOSAT data enhances uncertainty reductions in a joint inversion; however, spatial and temporal gaps in sampling still limit the ability to accurately resolve fluxes down to the sub-continental scale. The GOSAT inversion produces a shift in the global CO2 sink from the tropics to the north and south relative to the prior, and an increased source in the tropics of ~2 Pg C y-1 relative to the in situ inversion, similar to what is seen in studies using other inversion approaches. This result may be driven by sampling and residual retrieval biases in the GOSAT data, as suggested by significant discrepancies between posterior CO2 distributions and surface in situ and HIPPO mission aircraft data. While the shift in the global sink appears to be a robust feature of the inversions, the partitioning of the sink between land and ocean in the inversions using either in situ or GOSAT data is found to be sensitive to prior uncertainties because of negative correlations in the flux errors. The GOSAT inversion indicates significantly less CO2 uptake in summer of 2010 than in 2009 across northern regions, consistent with the impact of observed severe heat waves and drought. However, observations from an in situ network in Siberia imply that the GOSAT inversion exaggerates the 2010-2009 difference in uptake in that region, while the prior CASA-GFED model of net ecosystem production and fire emissions reasonably estimates that quantity. The prior, in situ posterior, and GOSAT posterior all indicate greater uptake over North America in spring to early summer of 2010 than in 2009, consistent with wetter conditions. The GOSAT inversion does not show the expected impact on fluxes of a 2010 drought in the Amazon; evaluation of posterior mole fractions against local aircraft profiles suggests that time-varying GOSAT coverage can bias estimation of flux interannual variability in this region.

3.
Nat Commun ; 7: 13428, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824333

RESUMO

Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

4.
Glob Chang Biol ; 21(8): 3087-101, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25826244

RESUMO

Warmer conditions over the past two decades have contributed to rapid expansion of bark beetle outbreaks killing millions of trees over a large fraction of western United States (US) forests. These outbreaks reduce plant productivity by killing trees and transfer carbon from live to dead pools where carbon is slowly emitted to the atmosphere via heterotrophic respiration which subsequently feeds back to climate change. Recent studies have begun to examine the local impacts of bark beetle outbreaks in individual stands, but the full regional carbon consequences remain undocumented for the western US. In this study, we quantify the regional carbon impacts of the bark beetle outbreaks taking place in western US forests. The work relies on a combination of postdisturbance forest regrowth trajectories derived from forest inventory data and a process-based carbon cycle model tracking decomposition, as well as aerial detection survey (ADS) data documenting the regional extent and severity of recent outbreaks. We find that biomass killed by bark beetle attacks across beetle-affected areas in western US forests from 2000 to 2009 ranges from 5 to 15 Tg C yr(-1) and caused a reduction of net ecosystem productivity (NEP) of about 6.1-9.3 Tg C y(-1) by 2009. Uncertainties result largely from a lack of detailed surveys of the extent and severity of outbreaks, calling out a need for improved characterization across western US forests. The carbon flux legacy of 2000-2009 outbreaks will continue decades into the future (e.g., 2040-2060) as committed emissions from heterotrophic respiration of beetle-killed biomass are balanced by forest regrowth and accumulation.


Assuntos
Carbono/análise , Besouros/fisiologia , Florestas , Modelos Teóricos , Árvores/parasitologia , Animais , Ciclo do Carbono , Ecossistema , Estados Unidos
5.
J Geophys Res Biogeosci ; 119(4): 645-660, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26213662

RESUMO

Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. KEY POINTS: Wildland, cropland, and prescribed fires had different trends and patternsSensitivity to climate varied with fire typeIntensity of air quality regulation influenced cropland burning trends.

7.
Science ; 334(6057): 787-91, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22076373

RESUMO

Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. We investigated the relationship between year-to-year changes in fire activity in South America and sea surface temperatures. We found that the Oceanic Niño Index was correlated with interannual fire activity in the eastern Amazon, whereas the Atlantic Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model to forecast regional fire season severity with lead times of 3 to 5 months. Our approach may contribute to the development of an early warning system for anticipating the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for climate and air quality.

8.
Science ; 303(5654): 73-6, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14704424

RESUMO

During the 1997 to 1998 El Niño, drought conditions triggered widespread increases in fire activity, releasing CH4 and CO2 to the atmosphere. We evaluated the contribution of fires from different continents to variability in these greenhouse gases from 1997 to 2001, using satellite-based estimates of fire activity, biogeochemical modeling, and an inverse analysis of atmospheric CO anomalies. During the 1997 to 1998 El Niño, the fire emissions anomaly was 2.1 +/- 0.8 petagrams of carbon, or 66 +/- 24% of the CO2 growth rate anomaly. The main contributors were Southeast Asia (60%), Central and South America (30%), and boreal regions of Eurasia and North America (10%).

9.
Oecologia ; 114(4): 441-454, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-28307893

RESUMO

C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) - regardless of the photosynthetic superiority of the C4 pathway - in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation - particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred.

10.
Tree Physiol ; 18(3): 141-153, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12651384

RESUMO

A coupled photosynthesis-stomatal conductance model was parameterized and tested with branches of black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) trees growing in the Northern Study Area of the Boreal Ecosystem-Atmosphere Study (BOREAS) in Manitoba, Canada. Branch samples containing foliage of all age-classes were harvested from a lowland old black spruce (OBS) and an old jack pine (OJP) stand and the responses of photosynthesis (A(n)) and stomatal conductance (g(s)) to temperature, CO(2), light, and leaf-to-air vapor pressure difference (VPD) were determined under controlled laboratory conditions at the beginning, middle, and end of the growing season (Intensive Field Campaigns (IFC) 1, 2, and 3, respectively). The parameterized model was then tested against in situ field gas-exchange measurements in a young jack pine (YJP) and an upland black spruce (UBS) stand as well as in the OBS and OJP stands. Parameterization showed that Rubisco capacity (V(max)), apparent quantum yield (alpha') and Q(10) for sink limitation were the most crucial parameters for the photosynthesis sub-model and that V(max) varied among different measurement series in the laboratory. Verification of the model against the data used to parameterize it yielded correlation coefficients (r) of 0.97 and 0.93 for black spruce and jack pine, respectively, when IFC-specific parameters were used, and 0.77 and 0.87 when IFC-2 parameters were applied to all IFCs. For both measured and modeled g(s), the stomatal conductance sub-model, which linearly relates g(s) to (A(n)h(s))/c(s) (where h(s) and c(s) are relative humidity and CO(2) mole fraction at the leaf surface, respectively), had significantly steeper slopes and higher r values when only the VPD response data were used for parameterization than when all of the response data were used for parameterization. Testing the photosynthesis sub-model against upper canopy field data yielded poor results when laboratory estimates of V(max) were used. Use of the mean V(max) estimated for all upper canopy branches measured on a given day improved model performance for jack pine (from a nonsignificant correlation between measured and modeled A(n) to r = 0.45), but not for black spruce (r = 0.45 for both cases). However, when V(max) was estimated for each branch sample individually, the model accurately predicted the 23 to 137% diurnal variation in A(n) for all stands for both the upper and lower canopy. This was true both when all of the other parameters were IFC-specific (r = 0.93 and 0.92 for black spruce and jack pine, respectively) and when only mid-growing season (IFC-2) values were used (r = 0.92 for both species). Branch-specific V(max) estimates also permitted accurate prediction of field g(s) (r = 0.75 and 0.89 for black spruce and jack pine, respectively), although parameterization with all of the response data overestimated g(s) in the field, whereas parameterization with only the VPD response data provided unbiased predictions. Thus, after parameterization with the laboratory data, accurately modeling the range of A(n) and g(s) encountered in the field for both black spruce and jack pine was reduced to a single unknown parameter, V(max).

11.
Tree Physiol ; 17(8_9): 521-535, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-14759825

RESUMO

Effects of shoot water potential (Psi) and leaf-to-atmosphere vapor pressure difference (VPD) on gas exchange of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) B.S.P.), and aspen (Populus tremuloides Michx.) were investigated at the northern edge of the boreal forest in Manitoba, Canada. Laboratory measurements on cut branches showed that net photosynthesis (A(n)) and mesophyll conductance (g(m)) of jack pine and g(m) of black spruce did not respond to Psi until a threshold Psi was reached below which they decreased linearly. Photosynthesis of black spruce decreased slowly with decreasing Psi above the threshold and declined more rapidly thereafter. The threshold Psi was lower in black spruce than in jack pine. However, stomatal conductance (g(s)) of black spruce decreased continuously with decreasing Psi, whereas g(s) of jack pine showed a threshold response. Mesophyll limitations were primarily responsible for the decline in A(n) at low Psi for jack pine and black spruce in the middle of the growing season, but stomatal limitations became more important later in the season. Field measurements on in situ branches on warm sunny days showed that both conifer species maintained Psi above the corresponding threshold and there was no evidence of Psi limitation on A(n) of jack pine, black spruce or aspen. Vapor pressure difference was important in regulating gas exchange in all three species. An empirical model was used to quantify the g(s) response to VPD. When parameterized with laboratory data for the conifers, the model also fit the corresponding field data. When parameterized with field data, the model showed that stomata of aspen were the most sensitive of the three species to VPD, and stomata of black spruce were the least sensitive. For jack pine and aspen, stomata of foliage in the upper canopy were significantly more sensitive than stomata of foliage in the lower canopy. Vapor pressure difference had a greater impact on A(n) of aspen than on A(n) of the conifers as a result of aspen's greater stomatal sensitivity to VPD and greater slope of the relationship between A(n) and intercellular CO(2) concentration (C(i)). During the 1994 growing season, VPD averaged 1.0 kPa, corresponding to ratios of C(i) to ambient CO(2) of 0.77, 0.71 and 0.81 for jack pine, black spruce and aspen, respectively. We conclude that increases in VPD at the leaf surface in response to climate change should affect the absolute CO(2) and H(2)O fluxes per unit leaf area of the aspen component of a boreal forest landscape more than those of the conifer component.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...