Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 344, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715141

RESUMO

BACKGROUND: Understanding the Mechanism of Action (MoA) of a compound is an often challenging but equally crucial aspect of drug discovery that can help improve both its efficacy and safety. Computational methods to aid MoA elucidation usually either aim to predict direct drug targets, or attempt to understand modulated downstream pathways or signalling proteins. Such methods usually require extensive coding experience and results are often optimised for further computational processing, making them difficult for wet-lab scientists to perform, interpret and draw hypotheses from. RESULTS: To address this issue, we in this work present MAVEN (Mechanism of Action Visualisation and Enrichment), an R/Shiny app which allows for GUI-based prediction of drug targets based on chemical structure, combined with causal reasoning based on causal protein-protein interactions and transcriptomic perturbation signatures. The app computes a systems-level view of the mechanism of action of the input compound. This is visualised as a sub-network linking predicted or known targets to modulated transcription factors via inferred signalling proteins. The tool includes a selection of MSigDB gene set collections to perform pathway enrichment on the resulting network, and also allows for custom gene sets to be uploaded by the researcher. MAVEN is hence a user-friendly, flexible tool for researchers without extensive bioinformatics or cheminformatics knowledge to generate interpretable hypotheses of compound Mechanism of Action. CONCLUSIONS: MAVEN is available as a fully open-source tool at https://github.com/laylagerami/MAVEN with options to install in a Docker or Singularity container. Full documentation, including a tutorial on example data, is available at https://laylagerami.github.io/MAVEN .


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Biologia Computacional , Documentação , Sistemas de Liberação de Medicamentos
2.
Elife ; 102021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33646943

RESUMO

We performed a systematic analysis of blood DNA methylation profiles from 4483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia, and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia.


Assuntos
Metilação de DNA , Epigenoma , Transtornos Psicóticos/fisiopatologia , Esquizofrenia Resistente ao Tratamento/fisiopatologia , Adulto , Idoso , Inglaterra , Feminino , Humanos , Irlanda , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/genética , Esquizofrenia Resistente ao Tratamento/genética , Escócia , Suécia , Adulto Jovem
3.
PLoS One ; 8(6): e67114, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840597

RESUMO

BACKGROUND: Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α) knockout (KO) mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism. METHODS: We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J) to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9-16 per genotype, per sex). RESULTS: In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours. CONCLUSIONS: These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder.


Assuntos
Agressão , Deficiências do Desenvolvimento/genética , Glicoproteínas/genética , Transtornos Mentais/genética , Neuropeptídeos/genética , Animais , Ansiedade/genética , Deficiências do Desenvolvimento/psicologia , Modelos Animais de Doenças , Feminino , Glicoproteínas/metabolismo , Humanos , Masculino , Transtornos da Memória/genética , Transtornos da Memória/psicologia , Memória Episódica , Transtornos Mentais/psicologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Comportamento de Nidação , Neuropeptídeos/metabolismo , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...