Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinose Pigmentar , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Nat Commun ; 15(1): 3567, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670973

RESUMO

The emergence of retinal progenitor cells and differentiation to various retinal cell types represent fundamental processes during retinal development. Herein, we provide a comprehensive single cell characterisation of transcriptional and chromatin accessibility changes that underline retinal progenitor cell specification and differentiation over the course of human retinal development up to midgestation. Our lineage trajectory data demonstrate the presence of early retinal progenitors, which transit to late, and further to transient neurogenic progenitors, that give rise to all the retinal neurons. Combining single cell RNA-Seq with spatial transcriptomics of early eye samples, we demonstrate the transient presence of early retinal progenitors in the ciliary margin zone with decreasing occurrence from 8 post-conception week of human development. In retinal progenitor cells, we identified a significant enrichment for transcriptional enhanced associate domain transcription factor binding motifs, which when inhibited led to loss of cycling progenitors and retinal identity in pluripotent stem cell derived organoids.


Assuntos
Diferenciação Celular , Retina , Análise de Célula Única , Células-Tronco , Humanos , Análise de Célula Única/métodos , Retina/citologia , Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Organoides/metabolismo , Organoides/citologia , Regulação da Expressão Gênica no Desenvolvimento , Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA-Seq , Linhagem da Célula , Transcriptoma
3.
iScience ; 27(4): 109397, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510120

RESUMO

Molecular information on the early stages of human retinal development remains scarce due to limitations in obtaining early human eye samples. Pluripotent stem cell-derived retinal organoids (ROs) provide an unprecedented opportunity for studying early retinogenesis. Using a combination of single cell RNA-seq and spatial transcriptomics we present for the first-time a single cell spatiotemporal transcriptome of RO development. Our data demonstrate that ROs recapitulate key events of retinogenesis including optic vesicle/cup formation, presence of a putative ciliary margin zone, emergence of retinal progenitor cells and their orderly differentiation to retinal neurons. Combining the scRNA- with scATAC-seq data, we were able to reveal cell-type specific transcription factor binding motifs on accessible chromatin at each stage of organoid development, and to show that chromatin accessibility is highly correlated to the developing human retina, but with some differences in the temporal emergence and abundance of some of the retinal neurons.

4.
J Cell Mol Med ; 27(3): 435-445, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36644817

RESUMO

Microglia are the primary resident immune cells in the retina. They regulate neuronal survival and synaptic pruning making them essential for normal development. Following injury, they mediate adaptive responses and under pathological conditions they can trigger neurodegeneration exacerbating the effect of a disease. Retinal organoids derived from human induced pluripotent stem cells (hiPSCs) are increasingly being used for a range of applications, including disease modelling, development of new therapies and in the study of retinogenesis. Despite many similarities to the retinas developed in vivo, they lack some key physiological features, including immune cells. We engineered an hiPSC co-culture system containing retinal organoids and microglia-like (iMG) cells and tested their retinal invasion capacity and function. We incorporated iMG into retinal organoids at 13 weeks and tested their effect on function and development at 15 and 22 weeks of differentiation. Our key findings showed that iMG cells were able to respond to endotoxin challenge in monocultures and when co-cultured with the organoids. We show that retinal organoids developed normally and retained their ability to generate spiking activity in response to light. Thus, this new co-culture immunocompetent in vitro retinal model provides a platform with greater relevance to the in vivo human retina.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Microglia , Retina , Organoides , Diferenciação Celular
5.
Hum Mol Genet ; 32(10): 1698-1710, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36645183

RESUMO

Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the developed world. Vision loss in the advanced stages of the disease is caused by atrophy of retinal photoreceptors, overlying retinal pigment epithelium (RPE) and choroidal endothelial cells. The molecular events that underline the development of these cell types from in utero to adult as well as the progression to intermediate and advanced stages AMD are not yet fully understood. We performed single-cell RNA-sequencing (RNA-Seq) of human fetal and adult RPE-choroidal tissues, profiling in detail all the cell types and elucidating cell type-specific proliferation, differentiation and immunomodulation events that occur up to midgestation. Our data demonstrate that progression from the fetal to adult state is characterized by an increase in expression of genes involved in the oxidative stress response and detoxification from heavy metals, suggesting a better defence against oxidative stress in the adult RPE-choroid tissue. Single-cell comparative transcriptional analysis between a patient with intermediate AMD and an unaffected subject revealed a reduction in the number of RPE cells and melanocytes in the macular region of the AMD patient. Together these findings may suggest a macular loss of RPE cells and melanocytes in the AMD patients, but given the complex processing of tissues required for single-cell RNA-Seq that is prone to technical artefacts, these findings need to be validated by additional techniques in a larger number of AMD patients and controls.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Adulto , Epitélio Pigmentado da Retina/metabolismo , Células Endoteliais/metabolismo , Corioide/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Desenvolvimento Fetal , Análise de Sequência de RNA
6.
J Extracell Vesicles ; 11(12): e12295, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36544284

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness. Vision loss is caused by the retinal pigment epithelium (RPE) and photoreceptors atrophy and/or retinal and choroidal angiogenesis. Here we use AMD patient-specific RPE cells with the Complement Factor H Y402H high-risk polymorphism to perform a comprehensive analysis of extracellular vesicles (EVs), their cargo and role in disease pathology. We show that AMD RPE is characterised by enhanced polarised EV secretion. Multi-omics analyses demonstrate that AMD RPE EVs carry RNA, proteins and lipids, which mediate key AMD features including oxidative stress, cytoskeletal dysfunction, angiogenesis and drusen accumulation. Moreover, AMD RPE EVs induce amyloid fibril formation, revealing their role in drusen formation. We demonstrate that exposure of control RPE to AMD RPE apical EVs leads to the acquisition of AMD features such as stress vacuoles, cytoskeletal destabilization and abnormalities in the morphology of the nucleus. Retinal organoid treatment with apical AMD RPE EVs leads to disrupted neuroepithelium and the appearance of cytoprotective alpha B crystallin immunopositive cells, with some co-expressing retinal progenitor cell markers Pax6/Vsx2, suggesting injury-induced regenerative pathways activation. These findings indicate that AMD RPE EVs are potent inducers of AMD phenotype in the neighbouring RPE and retinal cells.


Assuntos
Vesículas Extracelulares , Degeneração Macular , Humanos , Epitélio Pigmentado da Retina/metabolismo , Vesículas Extracelulares/metabolismo , Retina/metabolismo , Retina/patologia , Degeneração Macular/metabolismo , Fenótipo
7.
Stem Cell Reports ; 17(7): 1699-1713, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750043

RESUMO

Conjunctival epithelial cells, which express viral-entry receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), constitute the largest exposed epithelium of the ocular surface tissue and may represent a relevant viral-entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of basal, suprabasal, and superficial epithelial cells, and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single-cell RNA sequencing (RNA-seq), with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome expression, a productive infection did not ensue. The early innate immune response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust autocrine and paracrine NF-κB activity, without activation of antiviral interferon signalling. Collectively, these data enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential implications for the design of preventive strategies and conjunctival transplantation.


Assuntos
COVID-19 , Células Epiteliais/metabolismo , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2
8.
Stem Cells Transl Med ; 11(4): 415-433, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35325233

RESUMO

Retinoblastoma (Rb) is a childhood cancer of the developing retina, accounting for up to 17% of all tumors in infancy. To gain insights into the transcriptional events of cell state transitions during Rb development, we established 2 disease models via retinal organoid differentiation of a pRB (retinoblastoma protein)-depleted human embryonic stem cell line (RB1-null hESCs) and a pRB patient-specific induced pluripotent (iPSC) line harboring a RB1 biallelic mutation (c.2082delC). Both models were characterized by pRB depletion and accumulation of retinal progenitor cells at the expense of amacrine, horizontal and retinal ganglion cells, which suggests an important role for pRB in differentiation of these cell lineages. Importantly, a significant increase in the fraction of proliferating cone precursors (RXRγ+Ki67+) was observed in both pRB-depleted organoid models, which were defined as Rb-like clusters by single-cell RNA-Seq analysis. The pRB-depleted retinal organoids displayed similar features to Rb tumors, including mitochondrial cristae aberrations and rosette-like structures, and were able to undergo cell growth in an anchorage-independent manner, indicative of cell transformation in vitro. In both models, the Rb cones expressed retinal ganglion and horizontal cell markers, a novel finding, which could help to better characterize these tumors with possible therapeutic implications. Application of Melphalan, Topotecan, and TW-37 led to a significant reduction in the fraction of Rb proliferating cone precursors, validating the suitability of these in vitro models for testing novel therapeutics for Rb.


Assuntos
Células-Tronco Pluripotentes , Neoplasias da Retina , Retinoblastoma , Diferenciação Celular , Criança , Humanos , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Retina/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Proteína do Retinoblastoma/genética
9.
Clin Transl Med ; 12(3): e759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297555

RESUMO

INTRODUCTION: Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood. METHODS: We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control. RESULTS: To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival. CONCLUSIONS: Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.


Assuntos
Autofagia , Proteínas do Olho , Células-Tronco Pluripotentes Induzidas , Agregados Proteicos , Retinose Pigmentar , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Ribonucleoproteínas Nucleares Pequenas
10.
Stem Cells Transl Med ; 11(2): 159-177, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298655

RESUMO

Retinal drug toxicity screening is essential for the development of safe treatment strategies for a large number of diseases. To this end, retinal organoids derived from human pluripotent stem cells (hPSCs) provide a suitable screening platform due to their similarity to the human retina and the ease of generation in large-scale formats. In this study, two hPSC cell lines were differentiated to retinal organoids, which comprised all key retinal cell types in multiple nuclear and synaptic layers. Single-cell RNA-Seq of retinal organoids indicated the maintenance of retinal ganglion cells and development of bipolar cells: both cell types segregated into several subtypes. Ketorolac, digoxin, thioridazine, sildenafil, ethanol, and methanol were selected as key compounds to screen on retinal organoids because of their well-known retinal toxicity profile described in the literature. Exposure of the hPSC-derived retinal organoids to digoxin, thioridazine, and sildenafil resulted in photoreceptor cell death, while digoxin and thioridazine additionally affected all other cell types, including Müller glia cells. All drug treatments caused activation of astrocytes, indicated by dendrites sprouting into neuroepithelium. The ability to respond to light was preserved in organoids although the number of responsive retinal ganglion cells decreased after drug exposure. These data indicate similar drug effects in organoids to those reported in in vivo models and/or in humans, thus providing the first robust experimental evidence of their suitability for toxicological studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Diferenciação Celular , Digoxina/metabolismo , Digoxina/farmacologia , Humanos , Retina/metabolismo , Citrato de Sildenafila/metabolismo , Citrato de Sildenafila/farmacologia , Tioridazina/metabolismo , Tioridazina/farmacologia
11.
Front Cell Dev Biol ; 9: 700276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395430

RESUMO

Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15-20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell's transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.

12.
Invest Ophthalmol Vis Sci ; 62(6): 18, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34003213

RESUMO

Purpose: Retinoblastoma (Rb) is a malignant neoplasm arising during retinal development from mutations in the RB1 gene. Loss or inactivation of both copies of RB1 results in initiation of retinoblastoma tumors; however, additional genetic changes are needed for the continued growth and spread of the tumor. Ex vivo research has shown that in humans, retinoblastoma may initiate from RB1-depleted cone precursors. Notwithstanding, it has not been possible to assess the full spectrum of clonal types within the tumor itself in vivo and the molecular changes occurring at the cells of origin, enabling their malignant conversion. To overcome these challenges, we have performed the first single cell (sc) RNA- and ATAC-Seq analyses of primary tumor tissues, enabling us to dissect the transcriptional and chromatin accessibility heterogeneity of proliferating cone precursors in human Rb tumors. Methods: Two Rb tumors each characterized by two pathogenic RB1 mutations were dissociated to single cells and subjected to scRNA-Seq and scATAC-Seq using the 10× Genomics platform. In addition, nine human embryonic and fetal retina samples were dissociated to single cells and subjected to scRNA- and ATAC-Seq analyses. The scRNA- and ATAC-Seq data were embedded using Uniform Manifold Approximation and Projection and clustered with Seurat graph-based clustering. Integrated scATAC-Seq analysis of Rb tumors and human embryonic/fetal retina samples was performed to identify Rb cone enriched subclusters. Pseudo time analysis of proliferating cones in the Rb samples was performed with Monocle. Ingenuity Pathway Analysis was used to identify the signaling pathway and upstream regulators in the Rb cone-enriched subclusters. Results: Our single cell analyses revealed the predominant presence of cone precursors at different stages of the cell cycle in the Rb tumors and among those identified the G2/M subset as the cell type of origin. scATAC-Seq analysis identified two Rb enriched cone subclusters, each characterized by activation of different upstream regulators and signaling pathways, enabling proliferating cone precursors to escape cell cycle arrest and/or apoptosis. Conclusions: Our study provides evidence of Rb tumor heterogeneity and defines molecular pathways that can be targeted to define new treatment strategies.


Assuntos
Transformação Celular Neoplásica/genética , Cromatina/genética , Células Fotorreceptoras Retinianas Cones/patologia , Neoplasias da Retina/genética , Retinoblastoma/genética , Células-Tronco/patologia , Ativação Transcricional/genética , Ciclo Celular/fisiologia , Células Cultivadas , Pré-Escolar , Sequenciamento de Cromatina por Imunoprecipitação , Humanos , Lactente , Masculino , Retina/embriologia , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Proteínas de Ligação a Retinoblastoma/genética , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Ubiquitina-Proteína Ligases/genética
13.
Ocul Surf ; 21: 279-298, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33865984

RESUMO

PURPOSE: Single cell (sc) analyses of key embryonic, fetal and adult stages were performed to generate a comprehensive single cell atlas of all the corneal and adjacent conjunctival cell types from development to adulthood. METHODS: Four human adult and seventeen embryonic and fetal corneas from 10 to 21 post conception week (PCW) specimens were dissociated to single cells and subjected to scRNA- and/or ATAC-Seq using the 10x Genomics platform. These were embedded using Uniform Manifold Approximation and Projection (UMAP) and clustered using Seurat graph-based clustering. Cluster identification was performed based on marker gene expression, bioinformatic data mining and immunofluorescence (IF) analysis. RNA interference, IF, colony forming efficiency and clonal assays were performed on cultured limbal epithelial cells (LECs). RESULTS: scRNA-Seq analysis of 21,343 cells from four adult human corneas and adjacent conjunctivas revealed the presence of 21 cell clusters, representing the progenitor and differentiated cells in all layers of cornea and conjunctiva as well as immune cells, melanocytes, fibroblasts, and blood/lymphatic vessels. A small cell cluster with high expression of limbal progenitor cell (LPC) markers was identified and shown via pseudotime analysis to give rise to five other cell types representing all the subtypes of differentiated limbal and corneal epithelial cells. A novel putative LPCs surface marker, GPHA2, expressed on the surface of 0.41% ± 0.21 of the cultured LECs, was identified, based on predominant expression in the limbal crypts of adult and developing cornea and RNAi validation in cultured LECs. Combining scRNA- and ATAC-Seq analyses, we identified multiple upstream regulators for LPCs and demonstrated a close interaction between the immune cells and limbal progenitor cells. RNA-Seq analysis indicated the loss of GPHA2 expression and acquisition of proliferative limbal basal epithelial cell markers during ex vivo LEC expansion, independently of the culture method used. Extending the single cell analyses to keratoconus, we were able to reveal activation of collagenase in the corneal stroma and a reduced pool of limbal suprabasal cells as two key changes underlying the disease phenotype. Single cell RNA-Seq of 89,897 cells obtained from embryonic and fetal cornea indicated that during development, the conjunctival epithelium is the first to be specified from the ocular surface epithelium, followed by the corneal epithelium and the establishment of LPCs, which predate the formation of limbal niche by a few weeks. CONCLUSIONS: Our scRNA-and ATAC-Seq data of developing and adult cornea in steady state and disease conditions provide a unique resource for defining genes/pathways that can lead to improvement in ex vivo LPCs expansion, stem cell differentiation methods and better understanding and treatment of ocular surface disorders.


Assuntos
Epitélio Corneano , Limbo da Córnea , Adulto , Diferenciação Celular , Células Cultivadas , Córnea , Células Epiteliais , Humanos , Células-Tronco
14.
Stem Cells Transl Med ; 10(7): 976-986, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33710758

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged in December 2019 and spread quickly causing the coronavirus disease 2019 (COVID-19) pandemic. Recent single cell RNA-Seq analyses have shown the presence of SARS-CoV-2 entry factors in the human corneal, limbal, and conjunctival superficial epithelium, leading to suggestions that the human ocular surface may serve as an additional entry gateway and infection hub for SARS-CoV-2. In this article, we review the ocular clinical presentations of COVID-19 and the features of the ocular surface that may underline the overall low ocular SARS-CoV-2 infection. We critically evaluate the studies performed in nonhuman primates, ex vivo organ culture ocular models, stem cell derived eye organoids and the differences in infection efficiency observed in different parts of human ocular surface epithelium. Finally, we highlight the additional work that needs to be carried out to understand the immune response of the ocular surface to SARS-CoV-2 infection, which can be translated into prophylactic treatments that may be applied to other organ systems.


Assuntos
COVID-19/metabolismo , Túnica Conjuntiva/virologia , Córnea/virologia , Oftalmopatias/virologia , SARS-CoV-2/fisiologia , Replicação Viral , COVID-19/epidemiologia , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Córnea/metabolismo , Córnea/patologia , Oftalmopatias/metabolismo , Oftalmopatias/patologia , Humanos
15.
Stem Cells ; 39(7): 882-896, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33657251

RESUMO

Retinal dystrophies often lead to blindness. Developing therapeutic interventions to restore vision is therefore of paramount importance. Here we demonstrate the ability of pluripotent stem cell-derived cone precursors to engraft and restore light responses in the Pde6brd1 mouse, an end-stage photoreceptor degeneration model. Our data show that up to 1.5% of precursors integrate into the host retina, differentiate into cones, and engraft in close apposition to the host bipolar cells. Half of the transplanted mice exhibited visual behavior and of these 33% showed binocular light sensitivity. The majority of retinal ganglion cells exhibited contrast-sensitive ON, OFF or ON-OFF light responses and even motion sensitivity; however, quite a few exhibited unusual responses (eg, light-induced suppression), presumably reflecting remodeling of the neural retina. Our data indicate that despite relatively low engraftment yield, pluripotent stem cell-derived cone precursors can elicit light responsiveness even at advanced degeneration stages. Further work is needed to improve engraftment yield and counteract retinal remodeling to achieve useful clinical applications.


Assuntos
Células-Tronco Pluripotentes , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Transplante de Células-Tronco , Animais , Camundongos , Células-Tronco Pluripotentes/transplante , Degeneração Retiniana/terapia , Células Ganglionares da Retina/patologia
16.
Ocul Surf ; 19: 190-200, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502616

RESUMO

PURPOSE: The high infection rate of SARS-CoV-2 necessitates the need for multiple studies identifying the molecular mechanisms that facilitate the viral entry and propagation. Currently the potential extra-respiratory transmission routes of SARS-CoV-2 remain unclear. METHODS: Using single-cell RNA Seq and ATAC-Seq datasets and immunohistochemical analysis, we investigated SARS-CoV-2 tropism in the embryonic, fetal and adult human ocular surface. RESULTS: The co-expression of ACE2 receptor and entry protease TMPRSS2 was detected in the human adult conjunctival, limbal and corneal epithelium, but not in the embryonic and fetal ocular surface up to 21 post conception weeks. These expression patterns were corroborated by the single cell ATAC-Seq data, which revealed a permissive chromatin in ACE2 and TMPRSS2 loci in the adult conjunctival, limbal and corneal epithelium. Co-expression of ACE2 and TMPRSS2 was strongly detected in the superficial limbal, corneal and conjunctival epithelium, implicating these as target entry cells for SARS-CoV-2 in the ocular surface. Strikingly, we also identified the key pro-inflammatory signals TNF, NFKß and IFNG as upstream regulators of the transcriptional profile of ACE2+TMPRSS2+ cells in the superficial conjunctival epithelium, suggesting that SARS-CoV-2 may utilise inflammatory driven upregulation of ACE2 and TMPRSS2 expression to enhance infection in ocular surface. CONCLUSIONS: Together our data indicate that the human ocular surface epithelium provides an additional entry portal for SARS-CoV-2, which may exploit inflammatory driven upregulation of ACE2 and TMPRSS2 entry factors to enhance infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19 , Túnica Conjuntiva/metabolismo , Epitélio Corneano/metabolismo , Receptores Virais/genética , Serina Endopeptidases/genética , Idoso , Idoso de 80 Anos ou mais , Túnica Conjuntiva/virologia , Epitélio Corneano/virologia , Humanos , Pessoa de Meia-Idade , SARS-CoV-2
17.
Curr Eye Res ; 45(3): 385-396, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794277

RESUMO

Single-cell sequencing technologies have emerged as a revolutionary tool with transformative new methods to profile genetic, epigenetic, spatial, and lineage information in individual cells. Single-cell RNA sequencing (scRNA-Seq) allows researchers to collect large datasets detailing the transcriptomes of individual cells in space and time and is increasingly being applied to reveal cellular heterogeneity in retinal development, normal physiology, and disease, and provide new insights into cell-type specific markers and signaling pathways. In recent years, scRNA-Seq datasets have been generated from retinal tissue and pluripotent stem cell-derived retinal organoids. Their cross-comparison enables staging of retinal organoids, identification of specific cells in developing and adult human neural retina and provides deeper insights into cell-type sub-specification and geographical differences. In this article, we review the recent rapid progress in scRNA-Seq analyses of retina and retinal organoids, the questions that remain unanswered and the technical challenges that need to be overcome to achieve consistent results that reflect the complexity, functionality, and interactions of all retinal cell types.


Assuntos
Organoides/citologia , Células-Tronco Pluripotentes/citologia , Retina/citologia , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Humanos
18.
Stem Cells Transl Med ; 8(7): 694-706, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916455

RESUMO

A major goal in the stem cell field is to generate tissues that can be utilized as a universal tool for in vitro models of development and disease, drug development, or as a resource for patients suffering from disease or injury. Great efforts are being made to differentiate human pluripotent stem cells in vitro toward retinal tissue, which is akin to native human retina in its cytoarchitecture and function, yet the numerous existing retinal induction protocols remain variable in their efficiency and do not routinely produce morphologically or functionally mature photoreceptors. Herein, we determine the impact that the method of embryoid body (EB) formation and maintenance as well as cell line background has on retinal organoid differentiation from human embryonic stem cells and human induced pluripotent stem cells. Our data indicate that cell line-specific differences dominate the variables that underline the differentiation efficiency in the early stages of differentiation. In contrast, the EB generation method and maintenance conditions determine the later differentiation and maturation of retinal organoids. Of the latter, the mechanical method of EB generation under static conditions, accompanied by media supplementation with Y27632 for the first 48 hours of differentiation, results in the most consistent formation of laminated retinal neuroepithelium containing mature and electrophysiologically responsive photoreceptors. Collectively, our data provide substantive evidence for stage-specific differences in the ability to give rise to laminated retinae, which is determined by cell line-specific differences in the early stages of differentiation and EB generation/organoid maintenance methods at later stages.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Retina/metabolismo , Adulto , Linhagem Celular , Feminino , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Retina/citologia
19.
Development ; 146(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696714

RESUMO

The scarcity of embryonic/foetal material as a resource for direct study means that there is still limited understanding of human retina development. Here, we present an integrated transcriptome analysis combined with immunohistochemistry in human eye and retinal samples from 4 to 19 post-conception weeks. This analysis reveals three developmental windows with specific gene expression patterns that informed the sequential emergence of retinal cell types and enabled identification of stage-specific cellular and biological processes, and transcriptional regulators. Each stage is characterised by a specific set of alternatively spliced transcripts that code for proteins involved in the formation of the photoreceptor connecting cilium, pre-mRNA splicing and epigenetic modifiers. Importantly, our data show that the transition from foetal to adult retina is characterised by a large increase in the percentage of mutually exclusive exons that code for proteins involved in photoreceptor maintenance. The circular RNA population is also defined and shown to increase during retinal development. Collectively, these data increase our understanding of human retinal development and the pre-mRNA splicing process, and help to identify new candidate disease genes.


Assuntos
Perfilação da Expressão Gênica , Retina/embriologia , Retina/metabolismo , Processamento Alternativo/genética , Animais , Biomarcadores/metabolismo , Cílios/metabolismo , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo , Análise de Componente Principal , RNA/genética , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Circular , Retina/citologia , Retina/ultraestrutura , Transcriptoma/genética
20.
Stem Cells ; 37(5): 609-622, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681766

RESUMO

Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.


Assuntos
Diferenciação Celular/genética , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Cones/transplante , Degeneração Retiniana/terapia , Animais , Linhagem da Célula/genética , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Organoides/transplante , Células-Tronco Pluripotentes/transplante , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/transplante , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...