Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Nucleic Acid Ther ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38800942

RESUMO

The ABCA4 gene, involved in Stargardt disease, has a high percentage of splice-altering pathogenic variants, some of which cause complex RNA defects. Although antisense oligonucleotides (AONs) have shown promising results in splicing modulation, they have not yet been used to target complex splicing defects. Here, we performed AON-based rescue studies on ABCA4 complex splicing defects. Intron 13 variants c.1938-724A>G, c.1938-621G>A, c.1938-619A>G, and c.1938-514A>G all lead to the inclusion of different pseudo-exons (PEs) with and without an upstream PE (PE1). Intron 44 variant c.6148-84A>T results in multiple PE inclusions and/or exon skipping events. Five novel AONs were designed to target these defects. AON efficacy was assessed by in vitro splice assays using midigenes containing the variants of interest. All screened complex splicing defects were effectively rescued by the AONs. Although varying levels of efficacy were observed between AONs targeting the same PEs, for all variants at least one AON restored splicing to levels comparable or better than wildtype. In conclusion, AONs are a promising approach to target complex splicing defects in ABCA4.

2.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607040

RESUMO

Precision medicine is rapidly gaining recognition in the field of (ultra)rare conditions, where only a few individuals in the world are affected. Clinical trial design for a small number of patients is extremely challenging, and for this reason, the development of N-of-1 strategies is explored to accelerate customized therapy design for rare cases. A strong candidate for this approach is Stargardt disease (STGD1), an autosomal recessive macular degeneration characterized by high genetic and phenotypic heterogeneity. STGD1 is caused by pathogenic variants in ABCA4, and amongst them, several deep-intronic variants alter the pre-mRNA splicing process, generally resulting in the insertion of pseudoexons (PEs) into the final transcript. In this study, we describe a 10-year-old girl harboring the unique deep-intronic ABCA4 variant c.6817-713A>G. Clinically, she presents with typical early-onset STGD1 with a high disease symmetry between her two eyes. Molecularly, we designed antisense oligonucleotides (AONs) to block the produced PE insertion. Splicing rescue was assessed in three different in vitro models: HEK293T cells, fibroblasts, and photoreceptor precursor cells, the last two being derived from the patient. Overall, our research is intended to serve as the basis for a personalized N-of-1 AON-based treatment to stop early vision loss in this patient.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Oligonucleotídeos Antissenso , Humanos , Feminino , Criança , Doença de Stargardt/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Células HEK293 , Íntrons , Transportadores de Cassetes de Ligação de ATP/genética
3.
Nucleic Acid Ther ; 34(2): 73-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466963

RESUMO

Pathogenic variants in ABCA4 are the underlying molecular cause of Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by a progressive loss of central vision. Among intronic ABCA4 variants, c.4253+43G>A is frequently detected in STGD1 cases and is classified as a hypomorphic allele, generally associated with late-onset cases. This variant was previously reported to alter splicing regulatory sequences, but the splicing outcome is not fully understood yet. In this study, we attempted to better understand its effect on splicing and to rescue the aberrant splicing via antisense oligonucleotides (AONs). Wild-type and c.4253+43G>A variant-harboring maxigene vectors revealed additional skipping events, which were not previously detected upon transfection in HEK293T cells. To restore exon inclusion, we designed a set of 27 AONs targeting either splicing silencer motifs or the variant region and screened these in maxigene-transfected HEK293T cells. Candidate AONs able to promote exon inclusion were selected for further testing in patient-derived photoreceptor precursor cells. Surprisingly, no robust splicing modulation was observed in this model system. Overall, this research helped to adequately characterize the splicing alteration caused by the c.4253+43G>A variant, although future development of AON-mediated exon inclusion therapy for ABCA4 is needed.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Degeneração Macular , Humanos , Doença de Stargardt/genética , Células HEK293 , Íntrons/genética , Transportadores de Cassetes de Ligação de ATP/genética , Degeneração Macular/genética , Degeneração Macular/terapia , Mutação
4.
Sci Rep ; 14(1): 684, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38182646

RESUMO

Stargardt disease type 1 (STGD1), the most common form of hereditary macular dystrophy, can be caused by biallelic combinations of over 2200 variants in the ABCA4 gene. This leads to reduced or absent ABCA4 protein activity, resulting in toxic metabolite accumulation in the retina and damage of the retinal pigment epithelium and photoreceptors. Approximately 21% of all ABCA4 variants that contribute to disease influence ABCA4 pre-mRNA splicing. This emphasizes the need for therapies to restore disrupted ABCA4 splicing and halt STGD1 progression. Previously, QR-1011, an antisense oligonucleotide (AON), successfully corrected splicing abnormalities and restored normal ABCA4 protein translation in human retinal organoids carrying the prevalent disease-causing variant c.5461-10T>C in ABCA4. Here, we investigated whether QR-1011 could also correct splicing in four less common non-canonical splice site (NCSS) variants flanking ABCA4 exon 39: c.5461-8T>G, c.5461-6T>C, c.5584+5G>A and c.5584+6T>C. We administered QR-1011 and three other AONs to midigene-transfected cells and demonstrate that QR-1011 had the most pronounced effect on splicing compared to the others. Moreover, QR-1011 significantly increased full-length ABCA4 transcript levels for c.5461-8T>G and c.5584+6T>C. Splicing restoration could not be achieved in the other two variants, suggesting their more severe effect on splicing. Overall, QR-1011, initially developed for a single ABCA4 variant, exhibited potent splice correction capabilities for two additional severe NCSS variants nearby. This suggests the possibility of a broader therapeutic impact of QR-1011 extending beyond its original target and highlights the potential for treating a larger population of STGD1 patients affected by multiple severe ABCA4 variants with a single AON.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Oligodesoxirribonucleotídeos Antissenso , Organoides , Doença de Stargardt , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Éxons , Retina/citologia , Splicing de RNA/efeitos dos fármacos , Doença de Stargardt/tratamento farmacológico , Doença de Stargardt/genética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Organoides/efeitos dos fármacos
5.
Mol Ther ; 32(3): 837-851, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243599

RESUMO

The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Splicing de RNA , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Stargardt/genética , Mutação , Células Fotorreceptoras
6.
Ophthalmology ; 131(1): 87-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37598860

RESUMO

PURPOSE: Late-onset Stargardt disease is a subtype of Stargardt disease type 1 (STGD1), defined by an age of onset of 45 years or older. We describe the disease characteristics, underlying genetics, and disease progression of late-onset STGD1 and highlight the differences from geographic atrophy. DESIGN: Retrospective cohort study. PARTICIPANTS: Seventy-one patients with late-onset STGD1. METHODS: Medical files were reviewed for clinical data including age at onset, initial symptoms, and best-corrected visual acuity. A quantitative and qualitative assessment of retinal pigment epithelium (RPE) atrophy was performed on fundus autofluorescence images and OCT scans. MAIN OUTCOME MEASURES: Age at onset, genotype, visual acuity, atrophy growth rates, and loss of external limiting membrane, ellipsoid zone, and RPE. RESULTS: Median age at onset was 55.0 years (range, 45-82 years). A combination of a mild and severe variant in ATP-binding cassette subfamily A member 4 (ABCA4) was the most common genotype (n = 49 [69.0%]). The most frequent allele, c.5603A→T (p.Asn1868Ile), was present in 43 of 71 patients (60.6%). No combination of 2 severe variants was found. At first presentation, all patients have flecks. Foveal-sparing atrophy was present in 33.3% of eyes, whereas 21.1% had atrophy with foveal involvement. Extrafoveal atrophy was present in 38.9% of eyes, and no atrophy was evident in 6.7% of eyes. Time-to-event curves showed a median duration of 15.4 years (95% confidence interval, 11.1-19.6 years) from onset to foveal involvement. The median visual acuity decline was -0.03 Snellen decimal per year (interquartile range [IQR], -0.07 to 0.00 Snellen decimal; 0.03 logarithm of the minimum angle of resolution). Median atrophy growth was 0.590 mm2/year (IQR, 0.046-1.641 mm2/year) for definitely decreased autofluorescence and 0.650 mm2/year (IQR, 0.299-1.729 mm2/year) for total decreased autofluorescence. CONCLUSIONS: Late-onset STGD1 is a subtype of STGD1 with most commonly 1 severe and 1 mild ABCA4 variant. The general patient presents with typical fundus flecks and retinal atrophy in a foveal-sparing pattern with preserved central vision. Misdiagnosis as age-related macular degeneration should be avoided to prevent futile invasive treatments with potential complications. In addition, correct diagnosis lends patients with late-onset STGD1 the opportunity to participate in potentially beneficial therapeutic trials for STGD1. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Degeneração Retiniana , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Stargardt , Estudos Retrospectivos , Transportadores de Cassetes de Ligação de ATP/genética , Eletrorretinografia , Tomografia de Coerência Óptica , Atrofia , Progressão da Doença , Angiofluoresceinografia
7.
Stem Cell Res ; 73: 103252, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979432

RESUMO

Pathogenic variants in ABCA4 are associated with Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by bilateral central vision loss due to a progressive degeneration of retinal cells. An induced pluripotent stem cell (iPSC) line was generated from late-onset STGD1 patient-derived fibroblasts harboring bi-allelic ABCA4 variants by lentivirus-induced reprogramming. The obtained iPSC line (RMCGENi020-A) showed pluripotent features after the reprogramming process. The generation of this iPSC line facilitates its use to differentiate it into relevant retinal-like cell models, with the aim to adequately evaluate the effects of the ABCA4 variants.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Stargardt , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Células-Tronco Pluripotentes Induzidas/patologia , Degeneração Macular/genética , Degeneração Macular/patologia , Mutação , Doença de Stargardt/patologia
8.
Hum Mol Genet ; 32(21): 3078-3089, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37555651

RESUMO

Missense variants in ABCA4 constitute ~50% of causal variants in Stargardt disease (STGD1). Their pathogenicity is attributed to their direct effect on protein function, whilst their potential impact on pre-mRNA splicing disruption remains poorly understood. Interestingly, synonymous ABCA4 variants have previously been classified as 'severe' variants based on in silico analyses. Here, we systemically investigated the role of synonymous and missense variants in ABCA4 splicing by combining computational predictions and experimental assays. To identify variants of interest, we used SpliceAI to ascribe defective splice predictions on a dataset of 5579 biallelic STGD1 probands. We selected those variants with predicted delta scores for acceptor/donor gain > 0.20, and no previous reports on their effect on splicing. Fifteen ABCA4 variants were selected, 4 of which were predicted to create a new splice acceptor site and 11 to create a new splice donor site. In addition, three variants of interest with delta scores < 0.20 were included. The variants were introduced in wild-type midigenes that contained 4-12 kb of ABCA4 genomic sequence, which were subsequently expressed in HEK293T cells. By using RT-PCR and Sanger sequencing, we identified splice aberrations for 16 of 18 analyzed variants. SpliceAI correctly predicted the outcomes for 15 out of 18 variants, illustrating its reliability in predicting the impact of coding ABCA4 variants on splicing. Our findings highlight a causal role for coding ABCA4 variants in splicing aberrations, improving the severity assessment of missense and synonymous ABCA4 variants, and guiding to new treatment strategies for STGD1.


Assuntos
Degeneração Macular , Humanos , Doença de Stargardt/genética , Degeneração Macular/genética , Degeneração Macular/metabolismo , Células HEK293 , Reprodutibilidade dos Testes , Mutação , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Splice de RNA
9.
Stem Cell Res ; 71: 103169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37480818

RESUMO

Stargardt disease, a progressive retinal disorder, is associated with bi-allelic variants in ABCA4. Employing the CRISPR/Cas9 approach, we generated isogenic control lines (RMCGENi005-A-1, RMCGENi018-A-1, RMCGENi017-A-1) for each of three induced pluripotent stem cell lines (RMCGENi005-A, RMCGENi018-A, RMCGENi017-A) derived from Stargardt patients carrying compound heterozygous ABCA4 variants. All of the generated lines showed pluripotent characteristics, no chromosomal aberrations and no indication of off-targets. The availability of these isogenic control lines will allow us to have a fair comparison between health and disease state within our studies on Stargardt disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Stargardt/genética , Retina , Alelos , Aberrações Cromossômicas , Transportadores de Cassetes de Ligação de ATP/genética
10.
Stem Cell Res ; 71: 103164, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37441824

RESUMO

Stargardt disease, a progressive retinal disorder, is associated with bi-allelic variants in ABCA4, a protein that is expressed in the retina. Induced pluripotent stem cell lines (RMCGENi005-A, SCTCi018-A, SCTCi017-A) were generated by lentivirus reprogramming of fibroblasts derived from Stargardt patients carrying different bi-allelic ABCA4 variants. All the generated lines showed pluripotent characteristics and no chromosomal aberrations. The availability of these lines will allow us to generate patient-derived photoreceptor precursor cells and retinal organoids to further study ABCA4 and thereby, Stargardt disease in relevant model systems carrying the patient's genetic background.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Stargardt/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Retina/metabolismo , Aberrações Cromossômicas , Mutação , Transportadores de Cassetes de Ligação de ATP/genética
11.
Ophthalmol Sci ; 3(4): 100323, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37334034

RESUMO

Purpose: To study the prevalence, level, and nature of sleep problems and fatigue experienced by Usher syndrome type 2a (USH2a) patients. Design: Cross-sectional study. Participants: Fifty-six genetically confirmed Dutch patients with syndromic USH2a and 120 healthy controls. Methods: Sleep quality, prevalence, and type of sleep disorders, chronotype, fatigue, and daytime sleepiness were assessed using 5 questionnaires: (1) Pittsburgh Sleep Quality Index, (2) Holland Sleep Disorders Questionnaire, (3) Morningness-Eveningness Questionnaire, (4) Checklist Individual Strength, and (5) Epworth Sleepiness Scale. For a subset of patients, recent data on visual function were used to study the potential correlation between the outcomes of the questionnaires and disease progression. Main Outcome Measures: Results of all questionnaires were compared between USH2a and control cohorts, and the scores of the patients were compared with disease progression defined by age, visual field size, and visual acuity. Results: Compared with the control population, patients with USH2a experienced a poorer quality of sleep, a higher incidence of sleep disorders, and higher levels of fatigue and daytime sleepiness. Intriguingly, the sleep disturbances and high levels of fatigue were not correlated with the level of visual impairment. These results are in accordance with the patients' experiences that their sleep problems already existed before the onset of vision loss. Conclusions: This study demonstrates a high prevalence of fatigue and poor sleep quality experienced by patients with USH2a. Recognition of sleep problems as a comorbidity of Usher syndrome would be a first step toward improved patient care. The absence of a relationship between the level of visual impairment and the severity of reported sleep problems is suggestive of an extraretinal origin of the sleep disturbances. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

12.
Mol Ther Methods Clin Dev ; 29: 522-531, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37305852

RESUMO

Mutations in the lebercilin-encoding gene LCA5 cause one of the most severe forms of Leber congenital amaurosis, an early-onset retinal disease that results in severe visual impairment. Here, we report on the generation of a patient-specific cellular model to study LCA5-associated retinal disease. CRISPR-Cas9 technology was used to correct a homozygous nonsense variant in LCA5 (c.835C>T; p.Q279∗) in patient-derived induced pluripotent stem cells (iPSCs). The absence of off-target editing in gene-corrected (isogenic) control iPSCs was demonstrated by whole-genome sequencing. We differentiated the patient, gene-corrected, and unrelated control iPSCs into three-dimensional retina-like cells, so-called retinal organoids. We observed opsin and rhodopsin mislocalization to the outer nuclear layer in patient-derived but not in the gene-corrected or unrelated control organoids. We also confirmed the rescue of lebercilin expression and localization along the ciliary axoneme within the gene-corrected organoids. Here, we show the potential of combining precise single-nucleotide gene editing with the iPSC-derived retinal organoid system for the generation of a cellular model of early-onset retinal disease.

13.
Mol Ther Nucleic Acids ; 31: 674-688, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36910710

RESUMO

Stargardt disease type 1 (STGD1) is the most common hereditary form of maculopathy and remains untreatable. STGD1 is caused by biallelic variants in the ABCA4 gene, which encodes the ATP-binding cassette (type 4) protein (ABCA4) that clears toxic byproducts of the visual cycle. The c.5461-10T>C p.[Thr1821Aspfs∗6,Thr1821Valfs∗13] variant is the most common severe disease-associated variant, and leads to exon skipping and out-of-frame ABCA4 transcripts that prevent translation of functional ABCA4 protein. Homozygous individuals typically display early onset STGD1 and are legally blind by early adulthood. Here, we applied antisense oligonucleotides (AONs) to promote exon inclusion and restore wild-type RNA splicing of ABCA4 c.5461-10T>C. The effect of AONs was first investigated in vitro using an ABCA4 midigene model. Subsequently, the best performing AONs were administered to homozygous c.5461-10T>C 3D human retinal organoids. Isoform-specific digital polymerase chain reaction revealed a significant increase in correctly spliced transcripts after treatment with the lead AON, QR-1011, up to 53% correct transcripts at a 3 µM dose. Furthermore, western blot and immunohistochemistry analyses identified restoration of ABCA4 protein after treatment. Collectively, we identified QR-1011 as a potent splice-correcting AON and a possible therapeutic intervention for patients harboring the severe ABCA4 c.5461-10T>C variant.

14.
Cells ; 12(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672247

RESUMO

Mutations in PDE6D impair the function of its cognate protein, phosphodiesterase 6D (PDE6D), in prenylated protein trafficking towards the ciliary membrane, causing the human ciliopathy Joubert Syndrome (JBTS22) and retinal degeneration in mice. In this study, we purified the prenylated cargo of PDE6D by affinity proteomics to gain insight into PDE6D-associated disease mechanisms. By this approach, we have identified a specific set of PDE6D-interacting proteins that are involved in photoreceptor integrity, GTPase activity, nuclear import, or ubiquitination. Among these interacting proteins, we identified novel ciliary cargo proteins of PDE6D, including FAM219A, serine/threonine-protein kinase NIM1 (NIM1K), and ubiquitin-like protein 3 (UBL3). We show that NIM1K and UBL3 localize inside the cilium in a prenylation-dependent manner. Furthermore, UBL3 also localizes in vesicle-like structures around the base of the cilium. Through affinity proteomics of UBL3, we confirmed its strong interaction with PDE6D and its association with proteins that regulate small extracellular vesicles (sEVs) and ciliogenesis. Moreover, we show that UBL3 localizes in specific photoreceptor cilium compartments in a prenylation-dependent manner. Therefore, we propose that UBL3 may play a role in the sorting of proteins towards the photoreceptor outer segment, further explaining the development of PDE6D-associated retinal degeneration.


Assuntos
Cílios , Degeneração Retiniana , Humanos , Animais , Camundongos , Cílios/metabolismo , Degeneração Retiniana/metabolismo , Proteínas/metabolismo , Retina/metabolismo , Transporte Proteico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo
15.
Cells ; 11(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552712

RESUMO

Stargardt disease is an inherited retinal disease caused by biallelic mutations in the ABCA4 gene, many of which affect ABCA4 splicing. In this study, nine antisense oligonucleotides (AONs) were designed to correct pseudoexon (PE) inclusion caused by a recurrent deep-intronic variant in ABCA4 (c.769-784C>T). First, the ability of AONs to skip the PE from the final ABCA4 mRNA transcript was assessed in two cellular models carrying the c.769-784C>T variant: a midigene assay using HEK293T cells and patient-derived fibroblasts. Based on the splicing-correcting ability of each individual AON, the three most efficacious AONs targeting independent regions of the PE were selected for a final assessment in photoreceptor precursor cells (PPCs). The final analysis in the PPC model confirmed high efficacy of AON2, -5, and -7 in promoting PE exclusion. Among the three AONs, AON2 is chosen as the lead candidate for further optimization, hereby showcasing the high potential of AONs to correct aberrant splicing events driven by deep-intronic variants.

16.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429068

RESUMO

Pathogenic variants in RPE65 lead to retinal diseases, causing a vision impairment. In this work, we investigated the pathomechanism behind the frequent RPE65 variant, c.11+5G>A. Previous in silico predictions classified this change as a splice variant. Our prediction using novel software's suggested a 124-nt exon elongation containing a premature stop codon. This elongation was validated using midigenes-based approaches. Similar results were observed in patient-derived induced pluripotent stem cells (iPSC) and photoreceptor precursor cells. However, the splicing defect in all cases was detected at low levels and thereby does not fully explain the recessive condition of the resulting disease. Long-read sequencing discarded other rearrangements or variants that could explain the diseases. Subsequently, a more relevant model was employed: iPSC-derived retinal pigment epithelium (RPE) cells. In patient-derived iPSC-RPE cells, the expression of RPE65 was strongly reduced even after inhibiting a nonsense-mediated decay, contradicting the predicted splicing defect. Additional experiments demonstrated a cell-specific gene expression reduction due to the presence of the c.11+5G>A variant. This decrease also leads to the lack of the RPE65 protein, and differences in size and pigmentation between the patient and control iPSC-RPE. Altogether, our data suggest that the c.11+5G>A variant causes a cell-specific defect in the expression of RPE65 rather than the anticipated splicing defect which was predicted in silico.


Assuntos
Células-Tronco Pluripotentes Induzidas , Splicing de RNA , Humanos , Splicing de RNA/genética , Epitélio Pigmentado da Retina/metabolismo , Éxons/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Nat Med ; 28(5): 1014-1021, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379979

RESUMO

CEP290-associated Leber congenital amaurosis type 10 (LCA10) is a retinal disease resulting in childhood blindness. Sepofarsen is an RNA antisense oligonucleotide targeting the c.2991+1655A>G variant in the CEP290 gene to treat LCA10. In this open-label, phase 1b/2 ( NCT03140969 ), 12-month, multicenter, multiple-dose, dose-escalation trial, six adult patients and five pediatric patients received ≤4 doses of intravitreal sepofarsen into the worse-seeing eye. The primary objective was to evaluate sepofarsen safety and tolerability via the frequency and severity of ocular adverse events (AEs); secondary objectives were to evaluate pharmacokinetics and efficacy via changes in functional outcomes. Six patients received sepofarsen 160 µg/80 µg, and five patients received sepofarsen 320 µg/160 µg. Ten of 11 (90.9%) patients developed ocular AEs in the treated eye (5/6 with 160 µg/80 µg; 5/5 with 320 µg/160 µg) versus one of 11 (9.1%) in the untreated eye; most were mild in severity and dose dependent. Eight patients developed cataracts, of which six (75.0%) were categorized as serious (2/3 with 160 µg/80 µg; 4/5 with 320 µg/160 µg), as lens replacement was required. As the 160-µg/80-µg group showed a better benefit-risk profile, higher doses were discontinued or not initiated. Statistically significant improvements in visual acuity and retinal sensitivity were reported (post hoc analysis). The manageable safety profile and improvements reported in this trial support the continuation of sepofarsen development.


Assuntos
Amaurose Congênita de Leber , Adulto , Antígenos de Neoplasias/genética , Cegueira/genética , Proteínas de Ciclo Celular/genética , Criança , Proteínas do Citoesqueleto/metabolismo , Humanos , Amaurose Congênita de Leber/tratamento farmacológico , Amaurose Congênita de Leber/genética , Oligonucleotídeos Antissenso/efeitos adversos , Visão Ocular
18.
Hum Mol Genet ; 31(15): 2560-2570, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35253837

RESUMO

Retinitis pigmentosa (RP) is a genetically heterogeneous form of inherited retinal disease that leads to progressive visual impairment. One genetic subtype of RP, RP54, has been linked to mutations in PCARE (photoreceptor cilium actin regulator). We have recently shown that PCARE recruits WASF3 to the tip of a primary cilium, and thereby activates an Arp2/3 complex which results in the remodeling of actin filaments that drives the expansion of the ciliary tip membrane. On the basis of these findings, and the lack of proper photoreceptor development in mice lacking Pcare, we postulated that PCARE plays an important role in photoreceptor outer segment disk formation. In this study, we aimed to decipher the relationship between predicted structural and function amino acid motifs within PCARE and its function. Our results show that PCARE contains a predicted helical coiled coil domain together with evolutionary conserved binding sites for photoreceptor kinase MAK (type RP62), as well as EVH1 domain-binding linear motifs. Upon deletion of the helical domain, PCARE failed to localize to the cilia. Furthermore, upon deletion of the EVH1 domain-binding motifs separately or together, co-expression of mutant protein with WASF3 resulted in smaller ciliary tip membrane expansions. Finally, inactivation of the lipid modification on the cysteine residue at amino acid position 3 also caused a moderate decrease in the sizes of ciliary tip expansions. Taken together, our data illustrate the importance of amino acid motifs and domains within PCARE in fulfilling its physiological function.


Assuntos
Retinose Pigmentar , Animais , Cílios/genética , Cílios/metabolismo , Camundongos , Ligação Proteica , Domínios Proteicos , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
19.
Methods Mol Biol ; 2434: 145-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213015

RESUMO

A significant proportion of mutations underlying genetic disorders affect pre-mRNA splicing, generally causing partial or total skipping of exons, and/or inclusion of pseudoexons. These changes often lead to the formation of aberrant transcripts that can induce nonsense-mediated decay, and a subsequent lack of functional protein. For some genetic disorders, including inherited retinal diseases (IRDs), reproducing splicing dynamics in vitro is a challenge due to the specific environment provided by, e.g. the retinal tissue, cells of which cannot be easily obtained and/or cultured. Here, we describe how to engineer splicing vectors, validate the reliability and reproducibility of alternative cellular systems, assess pre-mRNA splicing defects involved in IRD, and finally correct those by using antisense oligonucleotide-based strategies.


Assuntos
Oligonucleotídeos Antissenso , Splicing de RNA , Processamento Alternativo , Éxons/genética , Mutação , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Reprodutibilidade dos Testes
20.
Stem Cell Res ; 60: 102689, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121194

RESUMO

Leber congenital amaurosis (LCA) can be caused by mutations in more than 20 different genes. One of these, RPE65, encodes a protein essential for the visual cycle that is expressed in retinal pigment epithelium cells. In this work, we describe the generation and characterization of the human iPSC line SCTCi16-A. This hiPSC line was generated from peripheral blood mononuclear cells (PBMCs) from a patient affected with LCA caused by the homozygous c.11+5G>A variant in the RPE65 gene. Reprograming was conducted using episomal vectors containing OCT3/4, SOX2, KLF4, L-MYC, and LIN28.


Assuntos
Células-Tronco Pluripotentes Induzidas , Amaurose Congênita de Leber , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação , cis-trans-Isomerases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...