Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 22(10): 1753-65, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21441303

RESUMO

DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length-mediated control of replication timing requires the TG(1-3) repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG(1-3) tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG(1-3) repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.


Assuntos
Acetiltransferases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Telômero/metabolismo , Acetilação , Sequência de Bases , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/genética , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Telômero/genética , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Tempo
2.
Genetics ; 183(4): 1249-60, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19805819

RESUMO

Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.


Assuntos
Centrômero/genética , Centrômero/metabolismo , Replicação do DNA , Instabilidade Genômica , Mutação , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Alelos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Centrômero/efeitos dos fármacos , Quinase do Ponto de Checagem 2 , Quebra Cromossômica/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , Segregação de Cromossomos/genética , Cromossomos Fúngicos/efeitos dos fármacos , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA Fúngico/biossíntese , DNA Fúngico/genética , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/genética , Instabilidade Genômica/efeitos dos fármacos , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fenótipo , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
3.
Genome Biol Evol ; 1: 350-63, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20333204

RESUMO

Genome rearrangements are mediators of evolution and disease. Such rearrangements are frequently bounded by transfer RNAs (tRNAs), transposable elements, and other repeated elements, suggesting a functional role for these elements in creating or repairing breakpoints. Though not well explored, there is evidence that origins of replication also colocalize with breakpoints. To investigate a potential correlation between breakpoints and origins, we analyzed evolutionary breakpoints defined between Saccharomyces cerevisiae and Kluyveromyces waltii and S. cerevisiae and a hypothetical ancestor of both yeasts, as well as breakpoints reported in the experimental literature. We find that origins correlate strongly with both evolutionary breakpoints and those described in the literature. Specifically, we find that origins firing earlier in S phase are more strongly correlated with breakpoints than are later-firing origins. Despite origins being located in genomic regions also bearing tRNAs and Ty elements, the correlation we observe between origins and breakpoints appears to be independent of these genomic features. This study lays the groundwork for understanding the mechanisms by which origins of replication may impact genome architecture and disease.

4.
Genetics ; 180(4): 1833-47, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18832352

RESUMO

Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.


Assuntos
Cromossomos Fúngicos/genética , Ciclina B/genética , Replicação do DNA , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ciclina B/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Modelos Genéticos , Mutação , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Cell Biol ; 27(18): 6396-406, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17636020

RESUMO

Hydroxyurea (HU) is a DNA replication inhibitor that negatively affects both the elongation and initiation phases of replication and triggers the "intra-S phase checkpoint." Previous work with budding yeast has shown that, during a short exposure to HU, MEC1/RAD53 prevent initiation at some late S phase origins. In this study, we have performed microarray experiments to follow the fate of all origins over an extended exposure to HU. We show that the genome-wide progression of DNA synthesis, including origin activation, follows the same pattern in the presence of HU as in its absence, although the time frames are very different. We find no evidence for a specific effect that excludes initiation from late origins. Rather, HU causes S phase to proceed in slow motion; all temporal classes of origins are affected, but the order in which they become active is maintained. We propose a revised model for the checkpoint response to HU that accounts for the continued but slowed pace of the temporal program of origin activation.


Assuntos
Replicação do DNA/efeitos dos fármacos , DNA Fúngico/biossíntese , Hidroxiureia/farmacologia , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Genoma Fúngico , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação , Fase S/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
6.
Nat Cell Biol ; 8(2): 148-55, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16429127

RESUMO

During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.


Assuntos
DNA de Cadeia Simples/genética , Genoma Fúngico , Hidroxiureia/farmacologia , Origem de Replicação/genética , Leveduras/genética , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , DNA de Cadeia Simples/análise , Exodesoxirribonucleases/genética , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas Serina-Treonina Quinases/genética , Fase S/efeitos dos fármacos , Fase S/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe , Telômero/genética , Telômero/metabolismo , Leveduras/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA