Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Mhealth Uhealth ; 10(2): e31877, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119373

RESUMO

BACKGROUND: Smartphone studies provide an opportunity to collect frequent data at a low burden on participants. Therefore, smartphones may enable data collection from people with progressive neurodegenerative diseases such as amyotrophic lateral sclerosis at high frequencies for a long duration. However, the progressive decline in patients' cognitive and functional abilities could also hamper the feasibility of collecting patient-reported outcomes, audio recordings, and location data in the long term. OBJECTIVE: The aim of this study is to investigate the completeness of survey data, audio recordings, and passively collected location data from 3 smartphone-based studies of people with amyotrophic lateral sclerosis. METHODS: We analyzed data completeness in three studies: 2 observational cohort studies (study 1: N=22; duration=12 weeks and study 2: N=49; duration=52 weeks) and 1 clinical trial (study 3: N=49; duration=20 weeks). In these studies, participants were asked to complete weekly surveys; weekly audio recordings; and in the background, the app collected sensor data, including location data. For each of the three studies and each of the three data streams, we estimated time-to-discontinuation using the Kaplan-Meier method. We identified predictors of app discontinuation using Cox proportional hazards regression analysis. We quantified data completeness for both early dropouts and participants who remained engaged for longer. RESULTS: Time-to-discontinuation was shortest in the year-long observational study and longest in the clinical trial. After 3 months in the study, most participants still completed surveys and audio recordings: 77% (17/22) in study 1, 59% (29/49) in study 2, and 96% (22/23) in study 3. After 3 months, passively collected location data were collected for 95% (21/22), 86% (42/49), and 100% (23/23) of the participants. The Cox regression did not provide evidence that demographic characteristics or disease severity at baseline were associated with attrition, although it was somewhat underpowered. The mean data completeness was the highest for passively collected location data. For most participants, data completeness declined over time; mean data completeness was typically lower in the month before participants dropped out. Moreover, data completeness was lower for people who dropped out in the first study month (very few data points) compared with participants who adhered long term (data completeness fluctuating around 75%). CONCLUSIONS: These three studies successfully collected smartphone data longitudinally from a neurodegenerative population. Despite patients' progressive physical and cognitive decline, time-to-discontinuation was higher than in typical smartphone studies. Our study provides an important benchmark for participant engagement in a neurodegenerative population. To increase data completeness, collecting passive data (such as location data) and identifying participants who are likely to adhere during the initial phase of a study can be useful. TRIAL REGISTRATION: ClinicalTrials.gov NCT03168711; https://clinicaltrials.gov/ct2/show/NCT03168711.


Assuntos
Aplicativos Móveis , Smartphone , Atividades Cotidianas , Humanos , Inquéritos e Questionários , Fatores de Tempo
2.
Artigo em Inglês | MEDLINE | ID: mdl-33771057

RESUMO

Objective: This study characterized two patient-reported outcome measures (PROMs): a patient-facing adaptation of the revised amyotrophic lateral sclerosis (ALS) Functional Rating Scale ("self-entry ALSFRS-R") and the Activities-specific Balance Confidence (ABC) Scale. Methods: ALS patients presenting to clinic completed PROMs that included (1) the self-entry ALSFRS-R, (2) the Activities-specific Balance Confidence Scale (ABC Scale), and (3) a question about falls. PROM data were compared to one another and to the traditional ALSFRS-R collected by trained evaluators in clinic ("standard ALSFRS-R"). Results: Over the data collection period, 449 ALS patients completed at least one of the three PROMs. Self-entry vs. standard ALSFRS-R total scores (n = 183) had high agreement (intraclass correlation (ICC)=0.81, 95% CI = 0.67, 0.88). Self-entry ALSFRS-R total scores were significantly higher than standard ALSFRS-R total scores (2.3 points, p < 0.001). In a subset of participants who contributed data at two timepoints, the average ALSFRS-R decline was not significantly different between methods (n = 49). ABC scores correlated highly with self-entry and standard ALSFRS-R Gross Motor subdomain scores (Pearson's r = 0.72, p < 0.001 and Pearson's r = 0.76, p < 0.001, respectively; n = 130). ABC score was negatively correlated with the number of reported falls within the last month (Spearman's r=-0.40; p < 0.001; n = 130). A 10-point decrease in ABC score increased odds of a reported fall by 16%. Conclusions: In a multidisciplinary clinic setting, self-entry and standard ALSFRS-R scores were similar, but not interchangeable. Self-entry scores were higher than standard ALSFRS-R scores but declined at a similar rate to the standard ALSFRS-R. ABC scores correlated with self-reported fall history and thus may provide useful data for clinical care.


Assuntos
Esclerose Lateral Amiotrófica , Instituições de Assistência Ambulatorial , Esclerose Lateral Amiotrófica/diagnóstico , Progressão da Doença , Humanos , Medidas de Resultados Relatados pelo Paciente , Autorrelato
3.
Muscle Nerve ; 63(2): 258-262, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33118628

RESUMO

INTRODUCTION: Passive data from smartphone sensors may be useful for health-care research. Our aim was to use the coronavirus disease-2019 (COVID-19) pandemic as a positive control to assess the ability to quantify behavioral changes in people with amyotrophic lateral sclerosis (ALS) from smartphone data. METHODS: Eight participants used the Beiwe smartphone application, which passively measured their location during the COVID-19 outbreak. We used an interrupted time series to quantify the effect of the US state of emergency declaration on daily home time and daily distance traveled. RESULTS: After the state of emergency declaration, median daily home time increased from 19.4 (interquartile range [IQR], 15.4-22.0) hours to 23.7 (IQR, 22.2-24.0) hours and median distance traveled decreased from 42 (IQR, 13-83) km to 3.7 (IQR, 1.5-10.3) km. The participant with the lowest functional ability changed behavior earlier. This participant stayed at home more and traveled less than the participant with highest functional ability, both before and after the state of emergency. DISCUSSION: We provide evidence that smartphone-based digital phenotyping can quantify the behavior of people with ALS. Although participants spent large amounts of time at home at baseline, the COVID-19 state of emergency declaration reduced their mobility further. Given participants' high level of daily home time, it is possible that their exposure to COVID-19 could be less than that of the general population.


Assuntos
Esclerose Lateral Amiotrófica , Comportamento , COVID-19 , Sistemas de Informação Geográfica , Aplicativos Móveis , Smartphone , Viagem , Idoso , Coleta de Dados , Feminino , Humanos , Análise de Séries Temporais Interrompida , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...