Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 643852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692812

RESUMO

Since the late 1980s, mice have been repopulated with human hematopoietic cells to study the fundamental biology of human hematopoiesis and immunity, as well as a broad range of human diseases in vivo. Multiple mouse recipient strains have been developed and protocols optimized to efficiently generate these "humanized" mice. Here, we review three guiding principles that have been applied to the development of the currently available models: (1) establishing tolerance of the mouse host for the human graft; (2) opening hematopoietic niches so that they can be occupied by human cells; and (3) providing necessary support for human hematopoiesis. We then discuss four remaining challenges: (1) human hematopoietic lineages that poorly develop in mice; (2) limited antigen-specific adaptive immunity; (3) absent tolerance of the human immune system for its mouse host; and (4) sub-functional interactions between human immune effectors and target mouse tissues. While major advances are still needed, the current models can already be used to answer specific, clinically-relevant questions and hopefully inform the development of new, life-saving therapies.


Assuntos
Imunidade Adaptativa , Modelos Animais de Doenças , Hematopoese/imunologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/imunologia , Animais , Xenoenxertos , Humanos , Camundongos
2.
Genome Res ; 31(2): 171-185, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33436377

RESUMO

Our core timekeeping mechanism, the circadian clock, plays a vital role in immunity. Although the mechanics of circadian control over the immune response is generally explained by transcriptional activation or repression derived from this clock's transcription-translation negative-feedback loop, research suggests that some regulation occurs beyond transcriptional activity. We comprehensively profiled the transcriptome and proteome of murine bone marrow-derived macrophages and found that only 15% of the circadian proteome had corresponding oscillating mRNA, suggesting post-transcriptional regulation influences macrophage clock regulatory output to a greater extent than any other tissue previously profiled. This regulation may be explained by the robust temporal enrichment we identified for proteins involved in degradation and translation. Extensive post-transcriptional temporal-gating of metabolic pathways was also observed and further corresponded with daily variations in ATP production, mitochondrial morphology, and phagocytosis. The disruption of this circadian post-transcriptional metabolic regulation impaired immune functionality. Our results demonstrate that cell-intrinsic post-transcriptional regulation is a primary driver of circadian output in macrophages and that this regulation, particularly of metabolic pathways, plays an important role in determining their response to immune stimuli.

3.
Bioinformatics ; 36(3): 773-781, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31384918

RESUMO

MOTIVATION: Time courses utilizing genome scale data are a common approach to identifying the biological pathways that are controlled by the circadian clock, an important regulator of organismal fitness. However, the methods used to detect circadian oscillations in these datasets are not able to accommodate changes in the amplitude of the oscillations over time, leading to an underestimation of the impact of the clock on biological systems. RESULTS: We have created a program to efficaciously identify oscillations in large-scale datasets, called the Extended Circadian Harmonic Oscillator application, or ECHO. ECHO utilizes an extended solution of the fixed amplitude oscillator that incorporates the amplitude change coefficient. Employing synthetic datasets, we determined that ECHO outperforms existing methods in detecting rhythms with decreasing oscillation amplitudes and in recovering phase shift. Rhythms with changing amplitudes identified from published biological datasets revealed distinct functions from those oscillations that were harmonic, suggesting purposeful biologic regulation to create this subtype of circadian rhythms. AVAILABILITY AND IMPLEMENTATION: ECHO's full interface is available at https://github.com/delosh653/ECHO. An R package for this functionality, echo.find, can be downloaded at https://CRAN.R-project.org/package=echo.find. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Relógios Circadianos , Ritmo Circadiano
4.
ACM BCB ; 2017: 455-463, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31844846

RESUMO

Circadian rhythms are endogenous cycles of approximately 24 hours reinforced by external cues such as light. These cycles are typically modeled as harmonic oscillators with fixed amplitude peaks. Using experimental data measuring global gene transcription in Neurospora crassa over 48 hours in the dark (i.e. with external queues removed), we demonstrate that many circadian genes frequently exhibit either damped harmonic oscillations, in which the peak amplitudes decrease each day, or driven harmonic oscillations, in which the peak amplitudes increase each day. By fitting extended harmonic oscillator models which include a damping ratio coefficient, we detected additional circadian genes that were not identified by the current standard tools that use fixed amplitude waves as reference, e.g. JTK_CYCLE. Functional Catalogue analysis confirms that our identified damped or driven genes exhibit distinct biological functions. The application of extended damped/driven harmonic oscillator models thus can elucidate, not only previously unidentified circadian genes, but also characterize gene subsets with expression patterns of biological relevance. Thus, expanded harmonic oscillators provide a powerful new tool for circadian system biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...