Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 374(6563): eaay9165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591645

RESUMO

Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño­Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. "Decadal," which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.

2.
Sci Adv ; 6(2): eaax4177, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31934624

RESUMO

During El Niño events, increased precipitation occurs over the equatorial central eastern Pacific, corresponding to enhanced convective heating that modulates global climate by exciting atmospheric teleconnections. These precipitation anomalies are projected to shift and extend eastward in response to global warming. We show that this predicted change is caused by narrowing of the meridional span of the underlying El Niño-related sea surface temperature (SST) anomalies that leads to intensification of the meridional gradient of the SST anomalies, strengthening boundary-layer moisture convergence over the equatorial eastern Pacific, and enhancing local positive precipitation anomalies. The eastward shift and extension of these anomalies also intensify and extend eastward negative precipitation anomalies over the tropical western North Pacific, by strengthening equatorward advection of low mean moist enthalpy. Changes in El Niño-induced tropical precipitation anomalies suggest that, under global warming, El Niño events decay faster after their peak phase, thus shortening their duration.

4.
Philos Trans A Math Phys Eng Sci ; 368(1931): 5117-35, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20956364

RESUMO

The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

5.
Philos Trans R Soc Lond B Biol Sci ; 363(1498): 1857-64, 2008 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-18267905

RESUMO

Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a 'business-as-usual' emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated. We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the parameters specified in the atmosphere component of HadCM3 and their associated influence on predicted surface climate. We then enhance the land surface description and (ii) implement a multilayer canopy light interception model and compare with the simple 'big-leaf' approach used in the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-structured approximation of an individual-based model (ecosystem demography). We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of the refined light interception model leads to an increase in simulated gross plant carbon uptake for the present day, but, with altered respiration, the net effect is a decrease in net primary productivity. However, this does not significantly affect the carbon loss from vegetation and soil as a consequence of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback. The potential for human-induced climate change to trigger the loss of Amazon rainforest appears robust within the context of the uncertainties explored in this paper. Some further uncertainties should be explored, particularly with respect to the representation of rooting depth.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Árvores , Incerteza , Previsões , Efeito Estufa , Luz , Modelos Biológicos , Árvores/fisiologia
6.
Philos Trans R Soc Lond B Biol Sci ; 363(1498): 1761-6, 2008 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-18267909

RESUMO

Future changes in meridional sea surface temperature (SST) gradients in the tropical Atlantic could influence Amazon dry-season precipitation by shifting the patterns of moisture convergence and vertical motion. Unlike for the El Niño-Southern Oscillation, there are no standard indices for quantifying this gradient. Here we describe a method for identifying the SST gradient that is most closely associated with June-August precipitation over the south Amazon. We use an ensemble of atmospheric general circulation model (AGCM) integrations forced by observed SST from 1949 to 2005. A large number of tropical Atlantic SST gradient indices are generated randomly and temporal correlations are examined between these indices and June-August precipitation averaged over the Amazon Basin south of the equator. The indices correlating most strongly with June-August southern Amazon precipitation form a cluster of near-meridional orientation centred near the equator. The location of the southern component of the gradient is particularly well defined in a region off the Brazilian tropical coast, consistent with known physical mechanisms. The chosen index appears to capture much of the Atlantic SST influence on simulated southern Amazon dry-season precipitation, and is significantly correlated with observed southern Amazon precipitation. We examine the index in 36 different coupled atmosphere-ocean model projections of climate change under a simple compound 1% increase in CO2. Within the large spread of responses, we find a relationship between the projected trend in the index and the Amazon dry-season precipitation trends. Furthermore, the magnitude of the trend relationship is consistent with the inter-annual variability relationship found in the AGCM simulations. This suggests that the index would be of use in quantifying uncertainties in climate change in the region.


Assuntos
Efeito Estufa , Estações do Ano , Temperatura , Clima Tropical , Oceano Atlântico , Conservação dos Recursos Naturais , Modelos Teóricos , Chuva
7.
Philos Trans A Math Phys Eng Sci ; 365(1857): 1957-70, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17569649

RESUMO

Predictions of future climate are of central importance in determining actions to adapt to the impacts of climate change and in formulating targets to reduce emissions of greenhouse gases. In the absence of analogues of the future, physically based numerical climate models must be used to make predictions. New approaches are under development to deal with a number of sources of uncertainty that arise in the prediction process. This paper introduces some of the concepts and issues in these new approaches, which are discussed in more detail in the papers contained in this issue.


Assuntos
Ecossistema , Efeito Estufa , Modelos Teóricos , Previsões , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...