Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Life (Basel) ; 14(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398753

RESUMO

Schizophrenia (SZ) is a heterogeneous and debilitating psychiatric disorder with a strong genetic component. To elucidate functional networks perturbed in schizophrenia, we analysed a large dataset of whole-genome studies that identified SNVs, CNVs, and a multi-stage schizophrenia genome-wide association study. Our analysis identified three subclusters that are interrelated and with small overlaps: GO:0007017~Microtubule-Based Process, GO:00015629~Actin Cytoskeleton, and GO:0007268~SynapticTransmission. We next analysed three distinct trio cohorts of 75 SZ Algerian, 45 SZ French, and 61 SZ Japanese patients. We performed Illumina HiSeq whole-exome sequencing and identified de novo mutations using a Bayesian approach. We validated 88 de novo mutations by Sanger sequencing: 35 in French, 21 in Algerian, and 32 in Japanese SZ patients. These 88 de novo mutations exhibited an enrichment in genes encoding proteins related to GO:0051015~actin filament binding (p = 0.0011) using David, and enrichments in GO: 0003774~transport (p = 0.019) and GO:0003729~mRNA binding (p = 0.010) using Amigo. One of these de novo variant was found in CORO1C coding sequence. We studied Coro1c haploinsufficiency in a Coro1c+/- mouse and found defects in the corpus callosum. These results could motivate future studies of the mechanisms surrounding genes encoding proteins involved in transport and the cytoskeleton, with the goal of developing therapeutic intervention strategies for a subset of SZ cases.

2.
Brain ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386308

RESUMO

Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1,500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations, however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESC), including a knock-out and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and Western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR), and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-Seq analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry, and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.

3.
Genome Biol ; 24(1): 261, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968726

RESUMO

BACKGROUND: Using mouse genetic studies and systematic assessments of brain neuroanatomical phenotypes, we set out to identify which of the 30 genes causes brain defects at the autism-associated 16p11.2 locus. RESULTS: We show that multiple genes mapping to this region interact to regulate brain anatomy, with female mice exhibiting far fewer brain neuroanatomical phenotypes. In male mice, among the 13 genes associated with neuroanatomical defects (Mvp, Ppp4c, Zg16, Taok2, Slx1b, Maz, Fam57b, Bola2, Tbx6, Qprt, Spn, Hirip3, and Doc2a), Mvp is the top driver implicated in phenotypes pertaining to brain, cortex, hippocampus, ventricles, and corpus callosum sizes. The major vault protein (MVP), the main component of the vault organelle, is a conserved protein found in eukaryotic cells, yet its function is not understood. Here, we find MVP expression highly specific to the limbic system and show that Mvp regulates neuronal morphology, postnatally and specifically in males. We also recapitulate a previously reported genetic interaction and show that Mvp+/-;Mapk3+/- mice exhibit behavioral deficits, notably decreased anxiety-like traits detected in the elevated plus maze and open field paradigms. CONCLUSIONS: Our study highlights multiple gene drivers in neuroanatomical phenotypes, interacting with each other through complex relationships. It also provides the first evidence for the involvement of the major vault protein in the regulation of brain size and neuroanatomy, specifically in male mice.


Assuntos
Transtorno Autístico , Masculino , Animais , Camundongos , Feminino , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Neuroanatomia , Encéfalo/metabolismo , Fenótipo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas do Tecido Nervoso/metabolismo
4.
Res Sq ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37841849

RESUMO

Pathogenic variants in ATP-dependent chromatin remodeling proteins are a recurrent cause of neurodevelopmental disorders (NDDs). The NURF complex consists of BPTF and either the SNF2H (SMARCA5) or SNF2L (SMARCA1) ISWI-chromatin remodeling enzyme. Pathogenic variants in BPTF and SMARCA5 were previously implicated in NDDs. Here, we describe 40 individuals from 30 families with de novo or maternally inherited pathogenic variants in SMARCA1. This novel NDD was associated with mild to severe ID/DD, delayed or regressive speech development, and some recurrent facial dysmorphisms. Individuals carrying SMARCA1 loss-of-function variants exhibited a mild genome-wide DNA methylation profile and a high penetrance of macrocephaly. Genetic dissection of the NURF complex using Smarca1, Smarca5, and Bptfsingle and double mouse knockouts revealed the importance of NURF composition and dosage for proper forebrain development. Finally, we propose that genetic alterations affecting different NURF components result in a NDD with a broad clinical spectrum.

5.
Neurobiol Dis ; 185: 106259, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573958

RESUMO

The vacuolar protein sorting-associated protein 13B (VPS13B) is a large and highly conserved protein. Disruption of VPS13B causes the autosomal recessive Cohen syndrome, a rare disorder characterized by microcephaly and intellectual disability among other features, including developmental delay, hypotonia, and friendly-personality. However, the underlying mechanisms by which VPS13B disruption leads to brain dysfunction still remain unexplained. To gain insights into the neuropathogenesis of Cohen syndrome, we systematically characterized brain changes in Vps13b-mutant mice and compared murine findings to 235 previously published and 17 new patients diagnosed with VPS13B-related Cohen syndrome. We showed that Vps13b is differentially expressed across brain regions with the highest expression in the cerebellum, the hippocampus and the cortex with postnatal peak. Half of the Vps13b-/- mice die during the first week of life. The remaining mice have a normal lifespan and display the core phenotypes of the human disease, including microcephaly, growth delay, hypotonia, altered memory, and enhanced sociability. Systematic 2D and 3D brain histo-morphological analyses reveal specific structural changes in the brain starting after birth. The dentate gyrus is the brain region with the most prominent reduction in size, while the motor cortex is specifically thinner in layer VI. The fornix, the fasciculus retroflexus, and the cingulate cortex remain unaffected. Interestingly, these neuroanatomical changes implicate an increase of neuronal death during infantile stages with no progression in adulthood suggesting that VPS13B promotes neuronal survival early in life. Importantly, whilst both sexes were affected, some neuroanatomical and behavioral phenotypes were less pronounced or even absent in females. We evaluate sex differences in Cohen patients and conclude that females are less affected both in mice and patients. Our findings provide new insights about the neurobiology of VPS13B and highlight previously unreported brain phenotypes while defining Cohen syndrome as a likely new entity of non-progressive infantile neurodegeneration.


Assuntos
Microcefalia , Degeneração Retiniana , Criança , Humanos , Masculino , Feminino , Animais , Camundongos , Microcefalia/genética , Microcefalia/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Degeneração Retiniana/genética , Deficiências do Desenvolvimento/genética , Fenótipo
6.
Brain ; 146(11): 4766-4783, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37437211

RESUMO

KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Animais , Camundongos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Cognição , Proteínas dos Microfilamentos/genética
7.
Genet Med ; 25(7): 100835, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36999555

RESUMO

PURPOSE: Miller-Dieker syndrome is caused by a multiple gene deletion, including PAFAH1B1 and YWHAE. Although deletion of PAFAH1B1 causes lissencephaly unambiguously, deletion of YWHAE alone has not clearly been linked to a human disorder. METHODS: Cases with YWHAE variants were collected through international data sharing networks. To address the specific impact of YWHAE loss of function, we phenotyped a mouse knockout of Ywhae. RESULTS: We report a series of 10 individuals with heterozygous loss-of-function YWHAE variants (3 single-nucleotide variants and 7 deletions <1 Mb encompassing YWHAE but not PAFAH1B1), including 8 new cases and 2 follow-ups, added with 5 cases (copy number variants) from literature review. Although, until now, only 1 intragenic deletion has been described in YWHAE, we report 4 new variants specifically in YWHAE (3 splice variants and 1 intragenic deletion). The most frequent manifestations are developmental delay, delayed speech, seizures, and brain malformations, including corpus callosum hypoplasia, delayed myelination, and ventricular dilatation. Individuals with variants affecting YWHAE alone have milder features than those with larger deletions. Neuroanatomical studies in Ywhae-/- mice revealed brain structural defects, including thin cerebral cortex, corpus callosum dysgenesis, and hydrocephalus paralleling those seen in humans. CONCLUSION: This study further demonstrates that YWHAE loss-of-function variants cause a neurodevelopmental disease with brain abnormalities.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Deficiência Intelectual , Lisencefalia , Transtornos do Neurodesenvolvimento , Humanos , Animais , Camundongos , Encéfalo/anormalidades , Lisencefalia/genética , Deficiência Intelectual/genética , Proteínas 14-3-3/genética
8.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232804

RESUMO

CHARGE syndrome is a rare congenital disorder frequently caused by mutations in the chromodomain helicase DNA-binding protein-7 CHD7. Here, we developed and systematically characterized two genetic mouse models with identical, heterozygous loss-of-function mutation of the Chd7 gene engineered on inbred and outbred genetic backgrounds. We found that both models showed consistent phenotypes with the core clinical manifestations seen in CHARGE syndrome, but the phenotypes in the inbred Chd7 model were more severe, sometimes having reduced penetrance and included dysgenesis of the corpus callosum, hypoplasia of the hippocampus, abnormal retrosplenial granular cortex, ventriculomegaly, hyperactivity, growth delays, impaired grip strength and repetitive behaviors. Interestingly, we also identified previously unreported features including reduced levels of basal insulin and reduced blood lipids. We suggest that the phenotypic variation reported in individuals diagnosed with CHARGE syndrome is likely due to the genetic background and modifiers. Finally, our study provides a valuable resource, making it possible for mouse biologists interested in Chd7 to make informed choices on which mouse model they should use to study phenotypes of interest and investigate in more depth the underlying cellular and molecular mechanisms.


Assuntos
Síndrome CHARGE , Proteínas de Ligação a DNA/metabolismo , Animais , Síndrome CHARGE/diagnóstico , Síndrome CHARGE/genética , Corpo Caloso/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Insulinas/genética , Camundongos , Mutação
9.
Curr Protoc ; 2(7): e509, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35857886

RESUMO

Congenital neurodevelopmental anomalies are present from birth and are characterized by an abnormal development of one or more structures of the brain. Brain structural anomalies are highly comorbid with neurodevelopmental and neuropsychiatric disorders such as intellectual disability, autism spectrum disorders, epilepsy, and schizophrenia, and 80% are of genetic origin. We aim to address an important neurobiological question: How many genes regulate the normal anatomy of the brain during development. To do so, we developed a quantitative approach for the assessment of a total of 106 neuroanatomical parameters in mouse mutant embryos at embryonic day 18.5 across two planes commonly used in brain anatomical studies, the coronal and sagittal planes. In this article we describe the techniques we developed and explain why ultrastandardized procedures involving embryonic mouse brains are even more of prime importance for morphological phenotyping than adult mouse brains. We focus our analysis on brain size anomalies and on the most frequently altered brain regions including the cortex, corpus callosum, hippocampus, ventricles, caudate putamen, and cerebellum. Our protocols allow a standardized histology pipeline from embryonic mouse brain preparation to sectioning, staining, and scanning and neuroanatomical analyses at well-defined positions on the coronal and sagittal planes. Together, our protocols will help scientists in deciphering congenital neurodevelopmental anomalies and anatomical changes between groups of mouse embryos in health and genetic diseases. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Fixation and preparation of embryonic mouse brain samples Basic Protocol 2: Sectioning, staining, and scanning of embryonic mouse brain sections Basic Protocol 3: Coronal neuroanatomical measurements of embryonic mouse brain structures Basic Protocol 4: Sagittal neuroanatomical measurements of embryonic mouse brain structures.


Assuntos
Encefalopatias , Neuroanatomia , Animais , Encéfalo/anormalidades , Cerebelo , Técnicas Histológicas/métodos , Camundongos , Neuroanatomia/métodos
10.
Nat Commun ; 13(1): 2746, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585091

RESUMO

Subcortical heterotopias are malformations associated with epilepsy and intellectual disability, characterized by the presence of ectopic neurons in the white matter. Mouse and human heterotopia mutations were identified in the microtubule-binding protein Echinoderm microtubule-associated protein-like 1, EML1. Further exploring pathological mechanisms, we identified a patient with an EML1-like phenotype and a novel genetic variation in DLGAP4. The protein belongs to a membrane-associated guanylate kinase family known to function in glutamate synapses. We showed that DLGAP4 is strongly expressed in the mouse ventricular zone (VZ) from early corticogenesis, and interacts with key VZ proteins including EML1. In utero electroporation of Dlgap4 knockdown (KD) and overexpression constructs revealed a ventricular surface phenotype including changes in progenitor cell dynamics, morphology, proliferation and neuronal migration defects. The Dlgap4 KD phenotype was rescued by wild-type but not mutant DLGAP4. Dlgap4 is required for the organization of radial glial cell adherens junction components and actin cytoskeleton dynamics at the apical domain, as well as during neuronal migration. Finally, Dlgap4 heterozygous knockout (KO) mice also show developmental defects in the dorsal telencephalon. We hence identify a synapse-related scaffold protein with pleiotropic functions, influencing the integrity of the developing cerebral cortex.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Proteínas Associadas SAP90-PSD95/metabolismo , Animais , Movimento Celular/genética , Córtex Cerebral/metabolismo , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/metabolismo , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/patologia , Humanos , Camundongos , Camundongos Knockout , Neurogênese/genética , Neurônios/fisiologia
11.
PLoS Genet ; 18(3): e1010114, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298461

RESUMO

The highly evolutionarily conserved transport protein particle (TRAPP) complexes (TRAPP II and III) perform fundamental roles in subcellular trafficking pathways. Here we identified biallelic variants in TRAPPC10, a component of the TRAPP II complex, in individuals with a severe microcephalic neurodevelopmental disorder. Molecular studies revealed a weakened interaction between mutant TRAPPC10 and its putative adaptor protein TRAPPC2L. Studies of patient lymphoblastoid cells revealed an absence of TRAPPC10 alongside a concomitant absence of TRAPPC9, another key TRAPP II complex component associated with a clinically overlapping neurodevelopmental disorder. The TRAPPC9/10 reduction phenotype was recapitulated in TRAPPC10-/- knockout cells, which also displayed a membrane trafficking defect. Notably, both the reduction in TRAPPC9 levels and the trafficking defect in these cells could be rescued by wild type but not mutant TRAPPC10 gene constructs. Moreover, studies of Trappc10-/- knockout mice revealed neuroanatomical brain defects and microcephaly, paralleling findings seen in the human condition as well as in a Trappc9-/- mouse model. Together these studies confirm autosomal recessive TRAPPC10 variants as a cause of human disease and define TRAPP-mediated pathomolecular outcomes of importance to TRAPPC9 and TRAPPC10 mediated neurodevelopmental disorders in humans and mice.


Assuntos
Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
12.
Mol Biol Evol ; 38(12): 5655-5663, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34464968

RESUMO

A nonsense allele at rs1343879 in human MAGEE2 on chromosome X has previously been reported as a strong candidate for positive selection in East Asia. This premature stop codon causing ∼80% protein truncation is characterized by a striking geographical pattern of high population differentiation: common in Asia and the Americas (up to 84% in the 1000 Genomes Project East Asians) but rare elsewhere. Here, we generated a Magee2 mouse knockout mimicking the human loss-of-function mutation to study its functional consequences. The Magee2 null mice did not exhibit gross abnormalities apart from enlarged brain structures (13% increased total brain area, P = 0.0022) in hemizygous males. The area of the granular retrosplenial cortex responsible for memory, navigation, and spatial information processing was the most severely affected, exhibiting an enlargement of 34% (P = 3.4×10-6). The brain size in homozygous females showed the opposite trend of reduced brain size, although this did not reach statistical significance. With these insights, we performed human association analyses between brain size measurements and rs1343879 genotypes in 141 Chinese volunteers with brain MRI scans, replicating the sexual dimorphism seen in the knockout mouse model. The derived stop gain allele was significantly associated with a larger volume of gray matter in males (P = 0.00094), and smaller volumes of gray (P = 0.00021) and white (P = 0.0015) matter in females. It is unclear whether or not the observed neuroanatomical phenotypes affect behavior or cognition, but it might have been the driving force underlying the positive selection in humans.


Assuntos
Antígenos de Neoplasias/metabolismo , Encéfalo , Proteínas/metabolismo , Caracteres Sexuais , Alelos , Animais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Fenótipo
13.
Hum Genet ; 140(6): 885-896, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33417013

RESUMO

The 22q11.2 deletion syndrome (22q11DS) is associated with a wide spectrum of cognitive and psychiatric symptoms. Despite the considerable work performed over the past 20 years, the genetic etiology of the neurodevelopmental phenotype remains speculative. Here, we report de novo heterozygous truncating variants in the HIRA (Histone cell cycle regulation defective, S. Cerevisiae, homolog of, A) gene associated with a neurodevelopmental disorder in two unrelated patients. HIRA is located within the commonly deleted region of the 22q11DS and encodes a histone chaperone that regulates neural progenitor proliferation and neurogenesis, and that belongs to the WD40 Repeat (WDR) protein family involved in brain development and neuronal connectivity. To address the specific impact of HIRA haploinsufficiency in the neurodevelopmental phenotype of 22q11DS, we combined Hira knock-down strategies in developing mouse primary hippocampal neurons, and the direct study of brains from heterozygous Hira+/- mice. Our in vitro analyses revealed that Hira gene is mostly expressed during neuritogenesis and early dendritogenesis stages in mouse total brain and in developing primary hippocampal neurons. Moreover, shRNA knock-down experiments showed that a twofold decrease of endogenous Hira expression level resulted in an impaired dendritic growth and branching in primary developing hippocampal neuronal cultures. In parallel, in vivo analyses demonstrated that Hira+/- mice displayed subtle neuroanatomical defects including a reduced size of the hippocampus, the fornix and the corpus callosum. Our results suggest that HIRA haploinsufficiency would likely contribute to the complex pathophysiology of the neurodevelopmental phenotype of 22q11DS by impairing key processes in neurogenesis and by causing neuroanatomical defects during cerebral development.


Assuntos
Proteínas de Ciclo Celular/genética , Síndrome de DiGeorge/genética , Haploinsuficiência , Chaperonas de Histonas/genética , Transtornos do Neurodesenvolvimento/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Fatores de Transcrição/genética , Animais , Sequência de Bases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Síndrome de DiGeorge/metabolismo , Síndrome de DiGeorge/patologia , Feminino , Fórnice/metabolismo , Fórnice/patologia , Expressão Gênica , Heterozigoto , Hipocampo/metabolismo , Hipocampo/patologia , Chaperonas de Histonas/antagonistas & inibidores , Chaperonas de Histonas/deficiência , Chaperonas de Histonas/metabolismo , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Neurogênese/genética , Neurônios/patologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
14.
Am J Hum Genet ; 107(6): 1170-1177, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232677

RESUMO

KDM4B is a lysine-specific demethylase with a preferential activity on H3K9 tri/di-methylation (H3K9me3/2)-modified histones. H3K9 tri/di-demethylation is an important epigenetic mechanism responsible for silencing of gene expression in animal development and cancer. However, the role of KDM4B on human development is still poorly characterized. Through international data sharing, we gathered a cohort of nine individuals with mono-allelic de novo or inherited variants in KDM4B. All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria. In mice, lysine demethylase 4B is expressed during brain development with high levels in the hippocampus, a region important for learning and memory. To understand how KDM4B variants can lead to GDD in humans, we assessed the effect of KDM4B disruption on brain anatomy and behavior through an in vivo heterozygous mouse model (Kdm4b+/-), focusing on neuroanatomical changes. In mutant mice, the total brain volume was significantly reduced with decreased size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly. This report demonstrates that variants in KDM4B are associated with GDD/ intellectual disability and neuroanatomical defects. Our findings suggest that KDM4B variation leads to a chromatinopathy, broadening the spectrum of this group of Mendelian disorders caused by alterations in epigenetic machinery.


Assuntos
Deficiências do Desenvolvimento/genética , Variação Genética , Histona Desmetilases com o Domínio Jumonji/genética , Malformações do Sistema Nervoso/genética , Animais , Encéfalo/diagnóstico por imagem , Epigênese Genética , Feminino , Heterozigoto , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Histonas/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Metilação , Camundongos , Processamento de Proteína Pós-Traducional , Convulsões/genética , Transdução de Sinais
15.
Epilepsia ; 61(5): 868-878, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239694

RESUMO

OBJECTIVE: Early onset epileptic encephalopathy with suppression-burst is one of the most severe epilepsy phenotypes in human patients. A significant proportion of cases have a genetic origin, and the most frequently mutated gene is KCNQ2, encoding Kv7.2, a voltage-dependent potassium channel subunit, leading to so-called KCNQ2-related epileptic encephalopathy (KCNQ2-REE). To study the pathophysiology of KCNQ2-REE in detail and to provide a relevant preclinical model, we generated and described a knock-in mouse model carrying the recurrent p.(Thr274Met) variant. METHODS: We introduced the p.(Thr274Met) variant by homologous recombination in embryonic stem cells, injected into C57Bl/6N blastocysts and implanted in pseudopregnant mice. Mice were then bred with 129Sv Cre-deleter to generate heterozygous mice carrying the p.(Thr274Met), and animals were maintained on the 129Sv genetic background. We studied the development of this new model and performed in vivo electroencephalographic (EEG) recordings, neuroanatomical studies at different time points, and multiple behavioral tests. RESULTS: The Kcnq2Thr274Met/+ mice are viable and display generalized spontaneous seizures first observed between postnatal day 20 (P20) and P30. In vivo EEG recordings show that the paroxysmal events observed macroscopically are epileptic seizures. The brain of the Kcnq2Thr274Met/+ animals does not display major structural defects, similar to humans, and their body weight is normal. Kcnq2Thr274Met/+ mice have a reduced life span, with a peak of unexpected death occurring for 25% of the animals by 3 months of age. Epileptic seizures were generally not observed when animals grew older. Behavioral characterization reveals important deficits in spatial learning and memory in adults but no gross abnormality during early neurosensory development. SIGNIFICANCE: Taken together, our results indicate that we have generated a relevant model to study the pathophysiology of KCNQ2-related epileptic encephalopathy and perform preclinical research for that devastating and currently intractable disease.


Assuntos
Disfunção Cognitiva/etiologia , Epilepsia Generalizada/etiologia , Canal de Potássio KCNQ2/metabolismo , Convulsões/etiologia , Animais , Encéfalo/patologia , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Generalizada/genética , Feminino , Técnicas de Introdução de Genes , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/fisiologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Convulsões/genética
16.
Nat Commun ; 10(1): 3465, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371714

RESUMO

Brain morphogenesis is an important process contributing to higher-order cognition, however our knowledge about its biological basis is largely incomplete. Here we analyze 118 neuroanatomical parameters in 1,566 mutant mouse lines and identify 198 genes whose disruptions yield NeuroAnatomical Phenotypes (NAPs), mostly affecting structures implicated in brain connectivity. Groups of functionally similar NAP genes participate in pathways involving the cytoskeleton, the cell cycle and the synapse, display distinct fetal and postnatal brain expression dynamics and importantly, their disruption can yield convergent phenotypic patterns. 17% of human unique orthologues of mouse NAP genes are known loci for cognitive dysfunction. The remaining 83% constitute a vast pool of genes newly implicated in brain architecture, providing the largest study of mouse NAP genes and pathways. This offers a complementary resource to human genetic studies and predict that many more genes could be involved in mammalian brain morphogenesis.


Assuntos
Encéfalo , Estudos de Associação Genética , Morfogênese/genética , Neuroanatomia , Neurogênese/genética , Animais , Encéfalo/metabolismo , Ciclo Celular , Cognição , Citoesqueleto , Redes Reguladoras de Genes , Genes Letais/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Mutação , Fenótipo , Sinapses
17.
BMC Public Health ; 19(1): 695, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170964

RESUMO

BACKGROUND: Malaria remains endemic in Ghana despite several interventions. Studies have demonstrated very high levels of asymptomatic malaria parasitaemia in both under-five and school-age children. Mass testing, treatment and tracking (MTTT) of malaria in communities is being proposed for implementation with the argument that it can reduce parasite load, amplify gains from the other control interventions and consequently lead to elimination. However, challenges associated with implementing MTTT such as feasibility, levels of coverage to be achieved for effectiveness, community perceptions and cost implications need to be clearly understood. This qualitative study was therefore conducted in an area with on-going MTTT to assess community and health workers' perceptions about feasibility of scale-up and effectiveness to guide scale-up decisions. METHODS: This qualitative study employed purposive sampling to select the study participants. Ten focus group discussions (FGDs) were conducted in seven communities; eight with community members (n = 80) and two with health workers (n = 14). In addition, two in-depth interviews (IDI) were conducted, one with a Physician Assistant and another with a Laboratory Technician at the health facility. All interviews were recorded, transcribed, translated and analyzed using QSR NVivo 12. RESULTS: Both health workers and community members expressed positive perceptions about the feasibility of implementation and effectiveness of MTTT as an intervention that could reduce the burden of malaria in the community. MTTT implementation was perceived to have increased sensitisation about malaria, reduced the incidence of malaria, reduced household expenditure on malaria and alleviated the need to travel long distances for healthcare. Key challenges to implementation were doubts about the expertise of trained Community-Based Health Volunteers (CBHVs) to diagnose and treat malaria appropriately, side effects of Artemisinin-based Combination Therapies (ACTs) and misconceptions that CBHVs could infect children with epilepsy. CONCLUSION: The study demonstrated that MTTT was perceived to be effective in reducing malaria incidence and related hospital visits in participating communities. MTTT was deemed useful in breaking financial and geographical barriers to accessing healthcare. The interventions were feasible and acceptable to community members, despite observed challenges to implementation such as concerns about CBHVs' knowledge and skills and reduced revenue from internally generated funds (IGF) of the health facility.


Assuntos
Pessoal de Saúde/psicologia , Implementação de Plano de Saúde , Controle de Infecções , Malária/psicologia , Programas de Rastreamento/psicologia , Adulto , Anti-Infecciosos/uso terapêutico , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Grupos Focais , Gana/epidemiologia , Acessibilidade aos Serviços de Saúde , Humanos , Malária/epidemiologia , Masculino , Programas de Rastreamento/métodos , Parasitemia/epidemiologia , Parasitemia/psicologia , Percepção , Pesquisa Qualitativa
18.
J Anat ; 235(3): 637-650, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31173351

RESUMO

The cerebral cortex is a highly organized structure responsible for advanced cognitive functions. Its development relies on a series of steps including neural progenitor cell proliferation, neuronal migration, axonal outgrowth and brain wiring. Disruption of these steps leads to cortical malformations, often associated with intellectual disability and epilepsy. We have generated a new resource to shed further light on subcortical heterotopia, a malformation characterized by abnormal neuronal position. We describe here the generation and characterization of a knockout (KO) mouse model for Eml1, a microtubule-associated protein showing mutations in human ribbon-like subcortical heterotopia. As previously reported for a spontaneous mouse mutant showing a mutation in Eml1, we observe severe cortical heterotopia in the KO. We also observe abnormal progenitor cells in early corticogenesis, likely to be the origin of the defects. EML1 KO mice on the C57BL/6N genetic background also appear to present a wider phenotype than the original mouse mutant, showing additional brain anomalies, such as corpus callosum abnormalities. We compare the anatomy of male and female mice and also study heterozygote animals. This new resource will help unravel roles for Eml1 in brain development and tissue architecture, as well as the mechanisms leading to severe subcortical heterotopia.


Assuntos
Encéfalo/patologia , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/patologia , Proteínas Associadas aos Microtúbulos/fisiologia , Animais , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/embriologia , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Knockout
19.
Nat Commun ; 10(1): 2129, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086189

RESUMO

De novo heterozygous missense variants in the γ-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors' proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1Y92C/+ mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1Y92C/+ animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations.


Assuntos
Malformações do Desenvolvimento Cortical/genética , Microtúbulos/metabolismo , Neurogênese/genética , Neurônios/fisiologia , Tubulina (Proteína)/genética , Animais , Comportamento Animal , Movimento Celular/genética , Centrossomo/metabolismo , Córtex Cerebral/anormalidades , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Modelos Animais de Doenças , Embrião de Mamíferos , Epilepsia/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Técnicas de Introdução de Genes , Predisposição Genética para Doença , Células HeLa , Humanos , Microscopia Intravital , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Microtúbulos/genética , Mutação de Sentido Incorreto
20.
Mol Metab ; 20: 166-177, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553770

RESUMO

OBJECTIVE: Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS: Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS: Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS: A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.


Assuntos
Glicemia/metabolismo , Dinaminas/metabolismo , Hipotálamo/metabolismo , Mitocôndrias/metabolismo , Células Receptoras Sensoriais/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Artérias Carótidas/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Proteínas Quinases/metabolismo , Transporte Proteico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...