Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Gastroenterology ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004156

RESUMO

BACKGROUND AND AIMS: The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and included epithelial barrier dysfunction, a key element at the interface between the gut lumen and the deeper intestinal layers. Beneath the epithelial barrier there is the vascular one representing the last barrier to avoid luminal antigen dissemination The aims of this study were to correlate morpho-functional aspects of epithelial and vascular barriers with symptom perception in IBS. METHODS: Seventy-eight healthy subjects (controls) and 223 IBS patients were enrolled in the study and phenotyped according to validated questionnaires. Sugar test was used to evaluate in vivo permeability. Immunohistochemistry, western blot and electron microscopy were used to characterize the vascular barrier. Vascular permeability was evaluated by assessing the mucosal expression of plasmalemma vesicle-associated protein-1 and vascular endothelial cadherin (VEC). Caco-2 or HUVEC monolayers were incubated with soluble mediators released by mucosal biopsies to highlight the mechanisms involved in permeability alteration. Correlation analyses have been performed among experimental and clinical data. RESULTS: Intestinal epithelial barrier was compromised in IBS patients throughout the gastrointestinal tract. IBS soluble mediators increased Caco-2 permeability via a downregulation of tight junction gene expression. Blood vessel density and vascular permeability were increased in the IBS colonic mucosa. IBS mucosal mediators increased permeability in HUVEC monolayers through the activation of protease-activated receptor (PAR)-2 and histone deacetylase (HDAC)11, resulting in VEC downregulation. Permeability changes correlated with intestinal and behavioral symptoms and health-related quality of life of IBS patients. CONCLUSION: Epithelial and vascular barriers are compromised in IBS patients and contribute to clinical manifestations.

2.
Dig Liver Dis ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653643

RESUMO

Up to 25% of patients recovering from antibiotic-treated Clostridioides difficile infection (CDI) develop functional symptoms reminiscent of Post-Infectious Irritable Bowel Syndrome (PI-IBS). For patients with persistent symptoms following infection, a clinical dilemma arises as to whether to provide additional antibiotic treatment or to adopt a conservative symptom-based approach. Here, we review the literature on CDI-related PI-IBS and compare the findings with PI-IBS. We review proposed mechanisms, including the role of C. difficile toxins and the microbiota, and discuss implications for therapy. We suggest that gut dysfunction post-CDI may be initiated by toxin-induced damage to enteroglial cells and that a dysbiotic gut microbitota maintains the clinical phenotype over time, prompting consideration of microbiota-directed therapies. While Fecal Microbial Transplant (FMT) is currently reserved for recurrent CDI (rCDI), we propose that microbiota-directed therapies may have a role in primary CDI in order to avoid or mitigate futher antibiotic treatment that further disrupts the microbiota and thus prevent PI-IBS. We discuss novel microbial transfer therapies and as they emerge, we recommend clinical trials to determine whether microbial transfer therapy of the primary infection prevents both rCDI and CDI-related PI- IBS.

3.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G687-G696, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591144

RESUMO

Tryptophan is an essential amino acid transformed by host and gut microbial enzymes into metabolites that regulate mucosal homeostasis through aryl hydrocarbon receptor (AhR) activation. Alteration of tryptophan metabolism has been associated with chronic inflammation; however, whether tryptophan supplementation affects the metabolite repertoire and AhR activation under physiological conditions in humans is unknown. We performed a randomized, double blind, placebo-controlled, crossover study in 20 healthy volunteers. Subjects on a low tryptophan background diet were randomly assigned to a 3-wk l-tryptophan supplementation (3 g/day) or placebo, and after a 2-wk washout switched to opposite interventions. We assessed gastrointestinal and psychological symptoms by validated questionnaires, AhR activation by cell reporter assay, tryptophan metabolites by liquid chromatography and high-resolution mass spectrometry, cytokine production in isolated monocytes by ELISA, and microbiota profile by 16S rRNA Illumina technique. Oral tryptophan supplementation was well tolerated, with no changes in gastrointestinal or psychological scores. Compared with placebo, tryptophan increased AhR activation capacity by duodenal contents, but not by feces. This was paralleled by higher urinary and plasma kynurenine metabolites and indoles. Tryptophan had a modest impact on fecal microbiome profiles and no significant effect on cytokine production. At the doses used in this study, oral tryptophan supplementation in humans induces microbial indole and host kynurenine metabolic pathways in the small intestine, known to be immunomodulatory. The results should prompt tryptophan intervention strategies in inflammatory conditions of the small intestine where the AhR pathway is impaired.NEW & NOTEWORTHY We demonstrate that in healthy subjects, orally administered tryptophan activates microbial indole and host kynurenine pathways in the small intestine, the primary metabolic site for dietary components, and the richest source of immune cells along the gut. This study provides novel insights in how to optimally activate immunomodulatory AhR pathways and indole metabolism in the small intestine, serving as basis for future therapeutic trials using l-tryptophan supplementation in chronic inflammatory conditions affecting the small intestine.


Assuntos
Estudos Cross-Over , Duodeno , Voluntários Saudáveis , Receptores de Hidrocarboneto Arílico , Triptofano , Humanos , Triptofano/metabolismo , Triptofano/administração & dosagem , Receptores de Hidrocarboneto Arílico/metabolismo , Masculino , Adulto , Feminino , Duodeno/metabolismo , Duodeno/efeitos dos fármacos , Método Duplo-Cego , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Adulto Jovem , Administração Oral , Cinurenina/metabolismo , Citocinas/metabolismo , Fezes/microbiologia , Fezes/química , Indóis/farmacologia , Indóis/administração & dosagem , Fatores de Transcrição Hélice-Alça-Hélice Básicos
4.
Cell Mol Gastroenterol Hepatol ; 17(3): 383-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38061549

RESUMO

BACKGROUND & AIMS: Although chronic diarrhea and constipation are common, the treatment is symptomatic because their pathophysiology is poorly understood. Accumulating evidence suggests that the microbiota modulates gut function, but the underlying mechanisms are unknown. We therefore investigated the pathways by which microbiota modulates gastrointestinal motility in different sections of the alimentary tract. METHODS: Gastric emptying, intestinal transit, muscle contractility, acetylcholine release, gene expression, and vasoactive intestinal polypeptide (VIP) immunoreactivity were assessed in wild-type and Myd88-/-Trif-/- mice in germ-free, gnotobiotic, and specific pathogen-free conditions. Effects of transient colonization and antimicrobials as well as immune cell blockade were investigated. VIP levels were assessed in human full-thickness biopsies by Western blot. RESULTS: Germ-free mice had similar gastric emptying but slower intestinal transit compared with specific pathogen-free mice or mice monocolonized with Lactobacillus rhamnosus or Escherichia coli, the latter having stronger effects. Although muscle contractility was unaffected, its neural control was modulated by microbiota by up-regulating jejunal VIP, which co-localized with and controlled cholinergic nerve function. This process was responsive to changes in the microbial composition and load and mediated through toll-like receptor signaling, with enteric glia cells playing a key role. Jejunal VIP was lower in patients with chronic intestinal pseudo-obstruction compared with control subjects. CONCLUSIONS: Microbial control of gastrointestinal motility is both region- and bacteria-specific; it reacts to environmental changes and is mediated by innate immunity-neural system interactions. By regulating cholinergic nerves, small intestinal VIP plays a key role in this process, thus providing a new therapeutic target for patients with motility disorders.


Assuntos
Motilidade Gastrointestinal , Peptídeo Intestinal Vasoativo , Humanos , Camundongos , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Motilidade Gastrointestinal/fisiologia , Neuroglia/metabolismo , Colinérgicos
5.
Gut Microbes ; 15(1): 2188874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36939195

RESUMO

Abdominal pain is common in patients with gastrointestinal disorders, but its pathophysiology is unclear, in part due to poor understanding of basic mechanisms underlying visceral sensitivity. Accumulating evidence suggests that gut microbiota is an important determinant of visceral sensitivity. Clinical and basic research studies also show that sex plays a role in pain perception, although the precise pathways are not elucidated. We investigated pain responses in germ-free and conventionally raised mice of both sexes, and assessed visceral sensitivity to colorectal distension, neuronal excitability of dorsal root ganglia (DRG) neurons and the production of substance P and calcitonin gene-related peptide (CGRP) in response to capsaicin or a mixture of G-protein coupled receptor (GPCR) agonists. Germ-free mice displayed greater in vivo responses to colonic distention than conventional mice, with no differences between males and females. Pretreatment with intracolonic capsaicin or GPCR agonists increased responses in conventional, but not in germ-free mice. In DRG neurons, gut microbiota and sex had no effect on neuronal activation by capsaicin or GPCR agonists. While stimulated production of substance P by DRG neurons was similar in germ-free and conventional mice, with no additional effect of sex, the CGRP production was higher in germ-free mice, mainly in females. Absence of gut microbiota increases visceral sensitivity to colorectal distention in both male and female mice. This is, at least in part, due to increased production of CGRP by DRG neurons, which is mainly evident in female mice. However, central mechanisms are also likely involved in this process.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Animais , Feminino , Masculino , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/farmacologia , Substância P/análise , Substância P/metabolismo
6.
Sci Transl Med ; 14(655): eabj1895, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895832

RESUMO

The gut microbiota has been implicated in chronic pain disorders, including irritable bowel syndrome (IBS), yet specific pathophysiological mechanisms remain unclear. We showed that decreasing intake of fermentable carbohydrates improved abdominal pain in patients with IBS, and this was accompanied by changes in the gut microbiota and decreased urinary histamine concentrations. Here, we used germ-free mice colonized with fecal microbiota from patients with IBS to investigate the role of gut bacteria and the neuroactive mediator histamine in visceral hypersensitivity. Germ-free mice colonized with the fecal microbiota of patients with IBS who had high but not low urinary histamine developed visceral hyperalgesia and mast cell activation. When these mice were fed a diet with reduced fermentable carbohydrates, the animals showed a decrease in visceral hypersensitivity and mast cell accumulation in the colon. We observed that the fecal microbiota from patients with IBS with high but not low urinary histamine produced large amounts of histamine in vitro. We identified Klebsiella aerogenes, carrying a histidine decarboxylase gene variant, as a major producer of this histamine. This bacterial strain was highly abundant in the fecal microbiota of three independent cohorts of patients with IBS compared with healthy individuals. Pharmacological blockade of the histamine 4 receptor in vivo inhibited visceral hypersensitivity and decreased mast cell accumulation in the colon of germ-free mice colonized with the high histamine-producing IBS fecal microbiota. These results suggest that therapeutic strategies directed against bacterial histamine could help treat visceral hyperalgesia in a subset of patients with IBS with chronic abdominal pain.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Dor Abdominal , Animais , Carboidratos/uso terapêutico , Histamina/uso terapêutico , Hiperalgesia , Síndrome do Intestino Irritável/microbiologia , Camundongos
7.
Gut Microbes ; 14(1): 2105095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905313

RESUMO

Both mast cells and microbiota play important roles in the pathogenesis of Irritable Bowel Syndrome (IBS), however the precise mechanisms are unknown. Using microbiota-humanized IBS mouse model, we show that colonic mast cells and mast cells co-localized with neurons were higher in mice colonized with IBS microbiota compared with those with healthy control (HC) microbiota. In situ hybridization showed presence of IBS, but not control microbiota, in the lamina propria and RNAscope demonstrated frequent co-localization of IBS bacteria and mast cells. TLR4 and H4 receptor expression was higher in mice with IBS microbiota, and in peritoneal-derived and bone marrow-derived mast cells (BMMCs) stimulated with IBS bacterial supernatant, which also increased BMMCs degranulation, chemotaxis, adherence and histamine release. While both TLR4 and H4 receptor inhibitors prevented BMMCs degranulation, only the latter attenuated their chemotaxis. We provide novel insights into the mechanisms, which contribute to gut dysfunction and visceral hypersensitivity in IBS.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Animais , Bactérias , Modelos Animais de Doenças , Mucosa Intestinal/microbiologia , Síndrome do Intestino Irritável/microbiologia , Mastócitos , Camundongos , Receptor 4 Toll-Like/metabolismo
8.
Mol Metab ; 61: 101498, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452877

RESUMO

BACKGROUND/PURPOSE: Type 2 diabetes and obesity increase the risk of developing colorectal cancer. Metformin may reduce colorectal cancer but the mechanisms mediating this effect remain unclear. In mice and humans, a high-fat diet (HFD), obesity and metformin are known to alter the gut microbiome but whether this is important for influencing tumor growth is not known. METHODS: Mice with syngeneic MC38 colon adenocarcinomas were treated with metformin or feces obtained from control or metformin treated mice. RESULTS: We find that compared to chow-fed controls, tumor growth is increased when mice are fed a HFD and that this acceleration of tumor growth can be partially recapitulated through transfer of the fecal microbiome or in vitro treatment of cells with fecal filtrates from HFD-fed animals. Treatment of HFD-fed mice with orally ingested, but not intraperitoneally injected, metformin suppresses tumor growth and increases the expression of short-chain fatty acid (SCFA)-producing microbes Alistipes, Lachnospiraceae and Ruminococcaceae. The transfer of the gut microbiome from mice treated orally with metformin to drug naïve, conventionalized HFD-fed mice increases circulating propionate and butyrate, reduces tumor proliferation, and suppresses the expression of sterol response element binding protein (SREBP) gene targets in the tumor. CONCLUSION: These data indicate that in obese mice fed a HFD, metformin reduces tumor burden through changes in the gut microbiome.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Animais , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico
9.
Front Cell Infect Microbiol ; 12: 773413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223537

RESUMO

Many physiological functions exhibit circadian rhythms: oscillations in biological processes that occur in a 24-hour period. These daily rhythms are maintained through a highly conserved molecular pacemaker known as the circadian clock. Circadian disruption has been proposed to cause increased risk of Inflammatory Bowel Disease (IBD) but the underlying mechanisms remain unclear. Patients with IBD experience chronic inflammation and impaired regeneration of intestinal epithelial cells. Previous animal-based studies have revealed that colitis models of IBD are more severe in mice without a circadian clock but the timing of colitis, and whether its inflammatory and regenerative processes have daily rhythms, remains poorly characterized. We tested circadian disruption using Bmal1-/- mutant mice that have a non-functional circadian clock and thus no circadian rhythms. Dextran Sulfate Sodium (DSS) was used to induce colitis. The disease activity of colitis was found to exhibit time-dependent variation in Bmal1+/+ control mice but is constant and elevated in Bmal1-/- mutants, who exhibit poor recovery. Histological analyses indicate worsened colitis severity in Bmal1-/- mutant colon, and colon infiltration of immune system cells shows a daily rhythm that is lost in the Bmal1-/- mutant. Similarly, epithelial proliferation in the colon has a daily rhythm in Bmal1+/+ controls but not in Bmal1-/- mutants. Our results support a critical role of a functional circadian clock in the colon which drives 24-hour rhythms in inflammation and healing, and whose disruption impairs colitis recovery. This indicates that weakening circadian rhythms not only worsens colitis, but delays healing and should be taken into account in the management of IBD. Recognition of this is important in the management of IBD patients required to do shift work.


Assuntos
Fatores de Transcrição ARNTL , Relógios Circadianos , Colite , Fatores de Transcrição ARNTL/genética , Animais , Ritmo Circadiano , Colite/induzido quimicamente , Colite/patologia , Humanos , Doenças Inflamatórias Intestinais , Camundongos
10.
J Psychiatr Res ; 135: 248-255, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33508544

RESUMO

BACKGROUND: Studies of germ-free (GF) mice demonstrate that gut microbiota can influence behaviour by modulating neurochemical pathways in the brain, and that bacterial colonization normalizes behavioural deficits in GF-mice. Since disrupted GABAergic and glutamatergic signaling are reported in mood disorders, this study investigated the effect of gut microbiota manipulations on EIB-relevant gene expression in the brain. METHODS: GF Swiss-Webster mice were colonized with E. coli JM83, complex microbiota (specific-pathogen-free; SPF), or no microbiota, and compared with controls (n = 6/group). 21 synaptic genes representing GABAergic, glutamatergic, BDNF, and astrocytic functions were measured in the hippocampus, amygdala, and prefrontal cortex using quantitative PCR. Gene co-expression analysis was used to identify gene modules related to colonization status, and compared by permutation analysis. Gene expression profiles were compared to existing post-mortem cohorts of depressed subjects (n = 28 cases vs 28 controls). RESULTS: Region-specific alterations in gene expression were observed in GF-mice compared to controls. 58% of all genes (14/24) altered in GF-mice were normalized following SPF-colonization. GF-mice displayed disorganization of gene co-expression networks in all three brain regions (hippocampus, p = 0.0003; amygdala, p = 0.0012; mPFC, p = 0.0069), which was restored by SPF colonization in hippocampus (p v.s. GF = 0.0003, p v.s. control = 0.60). The hippocampal gene expression profile in GF-mice was significantly correlated with that in human depression (ρ = 0.51, p = 0.027), and this correlation was not observed after colonization. CONCLUSION: Together, we show that the absence of gut microbiota disrupts the expression of EIB-relevant genes in mice, and colonization restores EIB-relevant expression, in ways that are relevant to human depression.


Assuntos
Escherichia coli , Microbioma Gastrointestinal , Tonsila do Cerebelo , Animais , Microbioma Gastrointestinal/genética , Hipocampo , Camundongos , Camundongos Endogâmicos BALB C
11.
Dig Dis Sci ; 66(10): 3529-3541, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33462747

RESUMO

BACKGROUND: Chronic constipation can have one or more of many etiologies, and a diagnosis based on symptoms is not sufficient as a basis for treatment, in particular surgery. AIM: To investigate the cause of chronic constipation in a patient with complete absence of spontaneous bowel movements. METHODS: High-resolution colonic manometry was performed to assess motor functions of the colon, rectum, the sphincter of O'Beirne and the anal sphincters. RESULTS: Normal colonic motor patterns were observed, even at baseline, but a prominent high-pressure zone at the rectosigmoid junction, the sphincter of O'Beirne, was consistently present. In response to high-amplitude propagating pressure waves (HAPWs) that were not consciously perceived, the sphincter and the anal sphincters would not relax and paradoxically contract, identified as autonomous dyssynergia. Rectal bisacodyl evoked marked HAPW activity with complete relaxation of the sphincter of O'Beirne and the anal sphincters, indicating that all neural pathways to generate the coloanal reflex were intact but had low sensitivity to physiological stimuli. A retrograde propagating cyclic motor pattern initiated at the sphincter of O'Beirne, likely contributing to failure of content to move into the rectum. CONCLUSIONS: Chronic constipation without the presence of spontaneous bowel movements can be associated with normal colonic motor patterns but a highly exaggerated pressure at the rectosigmoid junction: the sphincter of O'Beirne, and failure of this sphincter and the anal sphincters to relax associated with propulsive motor patterns. The sphincter of O'Beirne can be an important part of the pathophysiology of chronic constipation.


Assuntos
Ataxia/patologia , Colo Sigmoide/patologia , Constipação Intestinal/patologia , Reto/patologia , Canal Anal , Colo Sigmoide/anatomia & histologia , Colo Sigmoide/inervação , Colo Sigmoide/fisiologia , Constipação Intestinal/tratamento farmacológico , Feminino , Motilidade Gastrointestinal , Humanos , Laxantes/uso terapêutico , Manometria , Pessoa de Meia-Idade , Reto/anatomia & histologia , Reto/inervação , Reto/fisiologia , Reflexo
12.
Neurogastroenterol Motil ; 33(3): e13985, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32955166

RESUMO

BACKGROUND: Gnotobiotic mice colonized with microbiota from patients with irritable bowel syndrome (IBS) and comorbid anxiety (IBS+A) display gut dysfunction and anxiety-like behavior compared to mice colonized with microbiota from healthy volunteers. Using this model, we tested the therapeutic potential of the probiotic yeast Saccharomyces boulardii strain CNCM I-745 (S. bou) and investigated underlying mechanisms. METHODS: Germ-free Swiss Webster mice were colonized with fecal microbiota from an IBS+A patient or a healthy control (HC). Three weeks later, mice were gavaged daily with S. boulardii or placebo for two weeks. Anxiety-like behavior (light preference and step-down tests), gastrointestinal transit, and permeability were assessed. After sacrifice, samples were taken for gene expression by NanoString and qRT-PCR, microbiota 16S rRNA profiling, and indole quantification. KEY RESULTS: Mice colonized with IBS+A microbiota developed faster gastrointestinal transit and anxiety-like behavior (longer step-down latency) compared to mice with HC microbiota. S. bou administration normalized gastrointestinal transit and anxiety-like behavior in mice with IBS+A microbiota. Step-down latency correlated with colonic Trpv1 expression and was associated with altered microbiota profile and increased Indole-3-acetic acid (IAA) levels. CONCLUSIONS & INFERENCES: Treatment with S. bou improves gastrointestinal motility and anxiety-like behavior in mice with IBS+A microbiota. Putative mechanisms include effects on pain pathways, direct modulation of the microbiota, and indole production by commensal bacteria.


Assuntos
Ansiedade/microbiologia , Encéfalo/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Trânsito Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/microbiologia , Saccharomyces boulardii , Animais , Ansiedade/fisiopatologia , Encéfalo/metabolismo , Estudos de Casos e Controles , Colo/metabolismo , Transplante de Microbiota Fecal , Vida Livre de Germes , Humanos , Ácidos Indolacéticos/metabolismo , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Camundongos , Permeabilidade , Canais de Cátion TRPV/metabolismo
13.
Clin Gastroenterol Hepatol ; 19(11): 2343-2352.e8, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827724

RESUMO

BACKGROUND & AIMS: Many patients with irritable bowel syndrome (IBS) perceive that their symptoms are triggered by wheat-containing foods. We assessed symptoms and gastrointestinal transit before and after a gluten-free diet (GFD) in unselected patients with IBS and investigated biomarkers associated with symptoms. METHODS: We performed a prospective study of 50 patients with IBS (ROME III, all subtypes), with and without serologic reactivity to gluten (antigliadin IgG and IgA), and 25 healthy subjects (controls) at a university hospital in Hamilton, Ontario, Canada, between 2012 and 2016. Gastrointestinal transit, gut symptoms, anxiety, depression, somatization, dietary habits, and microbiota composition were studied before and after 4 weeks of a GFD. HLA-DQ2/DQ8 status was determined. GFD compliance was assessed by a dietitian and by measuring gluten peptides in stool. RESULTS: There was no difference in symptoms among patients at baseline, but after the GFD, patients with antigliadin IgG and IgA reported less diarrhea than patients without these antibodies (P = .03). Compared with baseline, IBS symptoms improved in 18 of 24 patients (75%) with antigliadin IgG and IgA and in 8 of 21 patients (38%) without the antibodies. Although constipation, diarrhea, and abdominal pain were reduced in patients with antigliadin IgG and IgA, only pain decreased in patients without these antibodies. Gastrointestinal transit normalized in a higher proportion of patients with antigliadin IgG and IgA. Anxiety, depression, somatization, and well-being increased in both groups. The presence of antigliadin IgG was associated with overall reductions in symptoms (adjusted odds ratio compared with patients without this antibody, 128.9; 95% CI, 1.16-1427.8; P = .04). Symptoms were reduced even in patients with antigliadin IgG and IgA who reduced gluten intake but were not strictly compliant with the GFD. In controls, a GFD had no effect on gastrointestinal symptoms or gut function. CONCLUSIONS: Antigliadin IgG can be used as a biomarker to identify patients with IBS who might have reductions in symptoms, particularly diarrhea, on a GFD. Larger studies are needed to validate these findings. ClinicalTrials.gov: NCT03492333.


Assuntos
Doença Celíaca , Síndrome do Intestino Irritável , Diarreia , Dieta Livre de Glúten , Humanos , Imunoglobulina G , Estudos Prospectivos
14.
Inflamm Bowel Dis ; 26(4): 493-501, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31970390

RESUMO

This review examines preclinical and clinical studies relevant to our understanding of how the bidirectional gut-brain axis influences the natural history of inflammatory bowel disease. Preclinical studies provide proof of concept that preexisting behavioral illness, such as depression, results in increased susceptibility to inflammatory stimuli and that commonly used classes of antidepressants protect against this vulnerability. However, clinical studies suggesting behavioral illness as a risk factor for IBD and a protective role for antidepressants have relied primarily on symptom-reporting rather than objective measurements of inflammation. In terms of gut-to-brain signaling, there is emerging evidence from preclinical and clinical observation that intestinal inflammation alters brain functions, including the induction of mood disorders, alteration of circadian rhythm both centrally and peripherally, and changes in appetitive behaviors. Furthermore, preclinical studies suggest that effective treatment of intestinal inflammation improves associated behavioral impairment. Taken together, the findings of this review encourage a holistic approach to the management of patients with IBD, accommodating lifestyle issues that include the avoidance of sleep deprivation, optimized nutrition, and the monitoring and appropriate management of behavioral disorders. The review also acknowledges the need for better-designed clinical studies evaluating the impact of behavioral disorders and their treatments on the natural history of IBD, utilizing hard end points to assess changes in the inflammatory process as opposed to reliance on symptom-based assessments. The findings of the review also encourage a better understanding of changes in brain function and circadian rhythm induced by intestinal inflammation.


Assuntos
Encéfalo/fisiopatologia , Ritmo Circadiano , Depressão/psicologia , Trato Gastrointestinal/fisiopatologia , Doenças Inflamatórias Intestinais/etiologia , Animais , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Microbioma Gastrointestinal , Humanos , Doenças Inflamatórias Intestinais/complicações , Transtornos Mentais/complicações , Transtornos Mentais/psicologia , Pesquisa Translacional Biomédica
15.
Gastroenterology ; 156(8): 2266-2280, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30802444

RESUMO

BACKGROUND & AIMS: Wheat-related disorders, a spectrum of conditions induced by the ingestion of gluten-containing cereals, have been increasing in prevalence. Patients with celiac disease have gluten-specific immune responses, but the contribution of non-gluten proteins to symptoms in patients with celiac disease or other wheat-related disorders is controversial. METHODS: C57BL/6 (control), Myd88-/-, Ticam1-/-, and Il15-/- mice were placed on diets that lacked wheat or gluten, with or without wheat amylase trypsin inhibitors (ATIs), for 1 week. Small intestine tissues were collected and intestinal intraepithelial lymphocytes (IELs) were measured; we also investigated gut permeability and intestinal transit. Control mice fed ATIs for 1 week were gavaged daily with Lactobacillus strains that had high or low ATI-degrading capacity. Nonobese diabetic/DQ8 mice were sensitized to gluten and fed an ATI diet, a gluten-containing diet or a diet with ATIs and gluten for 2 weeks. Mice were also treated with Lactobacillus strains that had high or low ATI-degrading capacity. Intestinal tissues were collected and IELs, gene expression, gut permeability and intestinal microbiota profiles were measured. RESULTS: In intestinal tissues from control mice, ATIs induced an innate immune response by activation of Toll-like receptor 4 signaling to MD2 and CD14, and caused barrier dysfunction in the absence of mucosal damage. Administration of ATIs to gluten-sensitized mice expressing HLA-DQ8 increased intestinal inflammation in response to gluten in the diet. We found ATIs to be degraded by Lactobacillus, which reduced the inflammatory effects of ATIs. CONCLUSIONS: ATIs mediate wheat-induced intestinal dysfunction in wild-type mice and exacerbate inflammation to gluten in susceptible mice. Microbiome-modulating strategies, such as administration of bacteria with ATI-degrading capacity, may be effective in patients with wheat-sensitive disorders.


Assuntos
Doença Celíaca/imunologia , Dieta Livre de Glúten/métodos , Gliadina/efeitos adversos , Lactobacillus/imunologia , Triticum/efeitos adversos , Amilases/antagonistas & inibidores , Animais , Doença Celíaca/dietoterapia , Doença Celíaca/fisiopatologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/imunologia , Gliadina/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Lactobacillus/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade , Triticum/imunologia , Inibidores da Tripsina/imunologia , Inibidores da Tripsina/farmacologia
16.
Cell Mol Gastroenterol Hepatol ; 7(4): 709-728, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716420

RESUMO

BACKGROUND & AIMS: Serotonin (5-hydroxytryptamine [5-HT]) is synthesized mainly within enterochromaffin (EC) cells in the gut, and tryptophan hydroxylase 1 (Tph1) is the rate-limiting enzyme for 5-HT synthesis in EC cells. Accumulating evidence suggests the importance of gut microbiota in intestinal inflammation. Considering the close proximity of EC cells and the microbes, we investigated the influence of gut-derived 5-HT on the microbiota and the susceptibility to colitis. METHODS: Gut microbiota of Tph1-/- and Tph1+/- mice were investigated by deep sequencing. Direct influence of 5-HT on bacteria was assessed by using in vitro system of isolated commensals. The indirect influence of 5-HT on microbiota was assessed by measuring antimicrobial peptides, specifically ß-defensins, in the colon of mice and HT-29 colonic epithelial cells. The impact of gut microbiota on the development of dextran sulfate sodium-induced colitis was assessed by transferring gut microbiota from Tph1-/- mice to Tph1+/- littermates and vice versa, as well as in germ-free mice. RESULTS: A significant difference in microbial composition between Tph1-/- and Tph1+/- littermates was observed. 5-HT directly stimulated and inhibited the growth of commensal bacteria in vitro, exhibiting a concentration-dependent and species-specific effect. 5-HT also inhibited ß-defensin production by HT-29 cells. Microbial transfer from Tph1-/- to Tph1+/- littermates and vice versa altered colitis severity, with microbiota from Tph1-/- mice mediating the protective effects. Furthermore, germ-free mice colonized with microbiota from Tph1-/- mice exhibited less severe dextran sulfate sodium-induced colitis. CONCLUSIONS: These findings demonstrate a novel role of gut-derived 5-HT in shaping gut microbiota composition in relation to susceptibility to colitis, identifying 5-HT-microbiota axis as a potential new therapeutic target in intestinal inflammatory disorders.


Assuntos
Colite/imunologia , Colite/patologia , Microbioma Gastrointestinal , Intestinos/imunologia , Serotonina/metabolismo , Transdução de Sinais , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Suscetibilidade a Doenças , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Heterozigoto , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/patologia , Masculino , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triptofano Hidroxilase/deficiência , Triptofano Hidroxilase/metabolismo , Regulação para Cima/efeitos dos fármacos , beta-Defensinas/metabolismo
17.
Microbiome ; 6(1): 57, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566748

RESUMO

BACKGROUND: Changes in hygiene and dietary habits, including increased consumption of foods high in fat, simple sugars, and salt that are known to impact the composition and function of the intestinal microbiota, may explain the increase in prevalence of chronic inflammatory diseases. High salt consumption has been shown to worsen autoimmune encephalomyelitis and colitis in mouse models through p38/MAPK signaling pathway. However, the effect of high salt diet (HSD) on gut microbiota and on intestinal immune homeostasis, and their roles in determining vulnerability to intestinal inflammatory stimuli are unknown. Here, we investigate the role of gut microbiota alterations induced by HSD on the severity of murine experimental colitis. RESULTS: Compared to control diet, HSD altered fecal microbiota composition and function, reducing Lactobacillus sp. relative abundance and butyrate production. Moreover, HSD affected the colonic, and to a lesser extent small intestine mucosal immunity by enhancing the expression of pro-inflammatory genes such as Rac1, Map2k1, Map2k6, Atf2, while suppressing many cytokine and chemokine genes, such as Ccl3, Ccl4, Cxcl2, Cxcr4, Ccr7. Conventionally raised mice fed with HSD developed more severe DSS- (dextran sodium sulfate) and DNBS- (dinitrobenzene sulfonic acid) induced colitis compared to mice on control diet, and this effect was absent in germ-free mice. Transfer experiments into germ-free mice indicated that the HSD-associated microbiota profile is critically dependent on continued exposure to dietary salt. CONCLUSIONS: Our results indicate that the exacerbation of colitis induced by HSD is associated with reduction in Lactobacillus sp. and protective short-chain fatty acid production, as well as changes in host immune status. We hypothesize that these changes alter gut immune homeostasis and lead to increased vulnerability to inflammatory insults.


Assuntos
Butiratos/metabolismo , Colite/etiologia , Colite/metabolismo , Dieta , Microbioma Gastrointestinal , Lactobacillus , Sais , Animais , Colite/patologia , Modelos Animais de Doenças , Progressão da Doença , Ácidos Graxos/metabolismo , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , RNA Ribossômico 16S/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
BMC Pregnancy Childbirth ; 18(1): 14, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310610

RESUMO

BACKGROUND: Probiotics are living microorganisms that, when administered in adequate amounts, confer a health benefit. It has been speculated that probiotics might help prevent preterm birth, but in two previous systematic reviews possible major increases in this risk have been suggested. Our objective was to perform a systematic review and meta-analysis of the risk of preterm birth and other adverse pregnancy outcomes in pregnant women taking probiotics, prebiotics or synbiotics. METHODS: We searched six electronic databases (MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials, Web of Science's Core collection and BIOSIS Preview) up to September 2016 and contacted authors for additional data. We included randomized controlled trials in which women with a singleton pregnancy received a probiotic, prebiotic or synbiotic intervention. Two independent reviewers extracted data using a piloted form and assessed the risk of bias using the Cochrane risk of bias tool. We used random-effects meta-analyses to pool the results. RESULTS: We identified 2574 publications, screened 1449 non-duplicate titles and abstracts and read 160 full text articles. The 49 publications that met our inclusion criteria represented 27 studies. No study used synbiotics, one used prebiotics and the rest used probiotics. Being randomized to take probiotics during pregnancy neither increased nor decreased the risk of preterm birth < 34 weeks (RR 1.03, 95% CI 0.29-3.64, I2 0%, 1017 women in 5 studies), preterm birth < 37 weeks (RR 1.08, 95% CI 0.71-1.63, I2 0%, 2484 women in 11 studies), or most of our secondary outcomes, including gestational diabetes mellitus. CONCLUSIONS: We found no evidence that taking probiotics or prebiotics during pregnancy either increases or decreases the risk of preterm birth or other infant and maternal adverse pregnancy outcomes. TRIAL REGISTRATION: We prospectively published the protocol for this study in the PROSPERO database ( CRD42016048129 ).


Assuntos
Prebióticos , Resultado da Gravidez , Nascimento Prematuro/epidemiologia , Probióticos/uso terapêutico , Diabetes Gestacional/epidemiologia , Feminino , Humanos , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Gastroenterology ; 153(2): 448-459.e8, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28483500

RESUMO

BACKGROUND & AIMS: Probiotics can reduce symptoms of irritable bowel syndrome (IBS), but little is known about their effects on psychiatric comorbidities. We performed a prospective study to evaluate the effects of Bifidobacterium longum NCC3001 (BL) on anxiety and depression in patients with IBS. METHODS: We performed a randomized, double-blind, placebo-controlled study of 44 adults with IBS and diarrhea or a mixed-stool pattern (based on Rome III criteria) and mild to moderate anxiety and/or depression (based on the Hospital Anxiety and Depression scale) at McMaster University in Canada, from March 2011 to May 2014. At the screening visit, clinical history and symptoms were assessed and blood samples were collected. Patients were then randomly assigned to groups and given daily BL (n = 22) or placebo (n = 22) for 6 weeks. At weeks 0, 6, and 10, we determined patients' levels of anxiety and depression, IBS symptoms, quality of life, and somatization using validated questionnaires. At weeks 0 and 6, stool, urine and blood samples were collected, and functional magnetic resonance imaging (fMRI) test was performed. We assessed brain activation patterns, fecal microbiota, urine metabolome profiles, serum markers of inflammation, neurotransmitters, and neurotrophin levels. RESULTS: At week 6, 14 of 22 patients in the BL group had reduction in depression scores of 2 points or more on the Hospital Anxiety and Depression scale, vs 7 of 22 patients in the placebo group (P = .04). BL had no significant effect on anxiety or IBS symptoms. Patients in the BL group had a mean increase in quality of life score compared with the placebo group. The fMRI analysis showed that BL reduced responses to negative emotional stimuli in multiple brain areas, including amygdala and fronto-limbic regions, compared with placebo. The groups had similar fecal microbiota profiles, serum markers of inflammation, and levels of neurotrophins and neurotransmitters, but the BL group had reduced urine levels of methylamines and aromatic amino acids metabolites. At week 10, depression scores were reduced in patients given BL vs placebo. CONCLUSION: In a placebo-controlled trial, we found that the probiotic BL reduces depression but not anxiety scores and increases quality of life in patients with IBS. These improvements were associated with changes in brain activation patterns that indicate that this probiotic reduces limbic reactivity. ClinicalTrials.gov no. NCT01276626.


Assuntos
Bifidobacterium longum , Encéfalo/fisiopatologia , Depressão/terapia , Síndrome do Intestino Irritável/psicologia , Probióticos/administração & dosagem , Adulto , Ansiedade/fisiopatologia , Ansiedade/psicologia , Ansiedade/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/microbiologia , Canadá , Depressão/fisiopatologia , Depressão/psicologia , Diarreia/microbiologia , Diarreia/terapia , Método Duplo-Cego , Emoções , Fezes/microbiologia , Feminino , Humanos , Síndrome do Intestino Irritável/fisiopatologia , Síndrome do Intestino Irritável/terapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Qualidade de Vida , Inquéritos e Questionários , Resultado do Tratamento
20.
Sci Transl Med ; 9(379)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28251905

RESUMO

Irritable bowel syndrome (IBS) is a common disorder characterized by altered gut function and often is accompanied by comorbid anxiety. Although changes in the gut microbiota have been documented, their relevance to the clinical expression of IBS is unknown. To evaluate a functional role for commensal gut bacteria in IBS, we colonized germ-free mice with the fecal microbiota from healthy control individuals or IBS patients with diarrhea (IBS-D), with or without anxiety, and monitored gut function and behavior in the transplanted mice. Microbiota profiles in recipient mice clustered according to the microbiota profiles of the human donors. Mice receiving the IBS-D fecal microbiota showed a taxonomically similar microbial composition to that of mice receiving the healthy control fecal microbiota. However, IBS-D mice showed different serum metabolomic profiles. Mice receiving the IBS-D fecal microbiota, but not the healthy control fecal microbiota, exhibited faster gastrointestinal transit, intestinal barrier dysfunction, innate immune activation, and anxiety-like behavior. These results indicate the potential of the gut microbiota to contribute to both intestinal and behavioral manifestations of IBS-D and suggest the potential value of microbiota-directed therapies in IBS patients.


Assuntos
Comportamento Animal , Transplante de Microbiota Fecal , Fezes/microbiologia , Trato Gastrointestinal/fisiopatologia , Síndrome do Intestino Irritável/microbiologia , Adulto , Animais , Ansiedade/sangue , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Estudos de Casos e Controles , Colo/imunologia , Colo/microbiologia , Feminino , Microbioma Gastrointestinal , Trânsito Gastrointestinal , Vida Livre de Germes , Humanos , Masculino , Metabolômica , Camundongos , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...