Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
2.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555252

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by MeCP2 mutations. Nonetheless, the pathophysiological roles of MeCP2 mutations in the etiology of intrinsic cardiac abnormality and sudden death remain unclear. In this study, we performed a detailed functional studies (calcium and electrophysiological analysis) and RNA-sequencing-based transcriptome analysis of a pair of isogenic RTT female patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) that expressed either MeCP2wildtype or MeCP2mutant allele and iPSC-CMs from a non-affected female control. The observations were further confirmed by additional experiments, including Wnt signaling inhibitor treatment, siRNA-based gene silencing, and ion channel blockade. Compared with MeCP2wildtype and control iPSC-CMs, MeCP2mutant iPSC-CMs exhibited prolonged action potential and increased frequency of spontaneous early after polarization. RNA sequencing analysis revealed up-regulation of various Wnt family genes in MeCP2mutant iPSC-CMs. Treatment of MeCP2mutant iPSC-CMs with a Wnt inhibitor XAV939 significantly decreased the ß-catenin protein level and CACN1AC expression and ameliorated their abnormal electrophysiological properties. In summary, our data provide novel insight into the contribution of activation of the Wnt/ß-catenin signaling cascade to the cardiac abnormalities associated with MeCP2 mutations in RTT.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Rett , Humanos , Feminino , Síndrome de Rett/metabolismo , Via de Sinalização Wnt , Miócitos Cardíacos/metabolismo , Linhagem Celular , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação
3.
Differentiation ; 99: 62-69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29239730

RESUMO

Corneal tissue is the most transplanted of all body tissues. Currently, cadaveric donor tissues are used for transplantation. However, a global shortage of transplant grade material has prompted development of alternative, cell-based therapies for corneal diseases. Pluripotent stem cells are attractive sources of cells for regenerative medicine, because large numbers of therapeutically useful cells can be generated. However, a detailed understanding of how to differentiate clinically relevant cell types from stem cells is fundamentally required. Periocular mesenchyme (POM), a subtype of cranial neural crest, is vital for development of multiple cell types in the cornea, including clinically relevant cells such as corneal endothelium and stromal keratocytes. Herein, we describe protocols for differentiation of POM from pluripotent stem cells. Using defined media containing inhibitors of TGFß and WNT signalling, we generated neural crest cells that express high levels of the POM transcription factors PITX2 and FOXC1. Furthermore, we identified cells resembling POM in the adult cornea, located in a niche between the trabecular meshwork and peripheral endothelium. The generation and expansion of POM is an important step in the generation of a number of cells types that could prove to be clinically useful for a number of diseases of the cornea.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Crista Neural/citologia , Células-Tronco Pluripotentes/citologia , Células Cultivadas , Córnea/citologia , Humanos , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Circulation ; 134(18): 1373-1389, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27678261

RESUMO

BACKGROUND: Danon disease is an X-linked disorder that leads to fatal cardiomyopathy caused by a deficiency in lysosome-associated membrane protein-2 (LAMP2). In female patients, a later onset and less severe clinical phenotype have been attributed to the random inactivation of the X chromosome carrying the mutant diseased allele. We generated a patient-specific induced pluripotent stem cell (iPSCs)-based model of Danon disease to evaluate the therapeutic potential of Xi-chromosome reactivation using a DNA methylation inhibitor. METHODS: Using whole-exome sequencing, we identified a nonsense mutation (c.520C>T, exon 4) of the LAMP2 gene in a family with Danon disease. We generated iPSC lines from somatic cells derived from the affected mother and her 2 sons, and we then differentiated them into cardiomyocytes (iPSC-CMs) for modeling the histological and functional signatures, including autophagy failure of Danon disease. RESULTS: Our iPSC-CM platform provides evidence that random inactivation of the wild-type and mutant LAMP2 alleles on the X chromosome is responsible for the unusual phenotype in female patients with Danon disease. In vitro, iPSC-CMs from these patients reproduced the histological features and autophagy failure of Danon disease. Administration of the DNA demethylating agent 5-aza-2'-deoxycytidine reactivated the silent LAMP2 allele in iPSCs and iPSC-CMs in female patients with Danon disease and ameliorated their autophagy failure, supporting the application of a patient-specific iPSC platform for disease modeling and drug screening. CONCLUSIONS: Our iPSC-CM platform provides novel mechanistic and therapeutic insights into the contribution of random X chromosome inactivation to disease phenotype in X-linked Danon disease.


Assuntos
Autofagia , Azacitidina/farmacologia , Cromossomos Humanos X/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo , Adulto , Alelos , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular , Feminino , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/biossíntese , Proteína 2 de Membrana Associada ao Lisossomo/genética , Masculino
5.
Stem Cells Transl Med ; 5(9): 1171-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27388238

RESUMO

UNLABELLED: : Familial osteochondritis dissecans (FOCD) is an inherited skeletal defect characterized by the development of large cartilage lesions in multiple joints, short stature, and early onset of severe osteoarthritis. It is associated with a heterozygous mutation in the ACAN gene, resulting in a Val-Met replacement in the C-type lectin domain of aggrecan. To understand the cellular pathogenesis of this condition, we studied the chondrogenic differentiation of patient bone marrow mesenchymal stromal cells (BM-MSCs). We also looked at cartilage derived from induced pluripotent stem cells (iPSCs) generated from patient fibroblasts. Our results revealed several characteristics of the differentiated chondrocytes that help to explain the disease phenotype and susceptibility to cartilage injury. First, patient chondrogenic pellets had poor structural integrity but were rich in glycosaminoglycan. Second, it was evident that large amounts of aggrecan accumulated within the endoplasmic reticulum of chondrocytes differentiated from both BM-MSCs and iPSCs. In turn, there was a marked absence of aggrecan in the extracellular matrix. Third, it was evident that matrix synthesis and assembly were globally dysregulated. These results highlight some of the abnormal aspects of chondrogenesis in these patient cells and help to explain the underlying cellular pathology. The results suggest that FOCD is a chondrocyte aggrecanosis with associated matrix dysregulation. The work provides a new in vitro model of osteoarthritis and cartilage degeneration based on the use of iPSCs and highlights how insights into disease phenotype and pathogenesis can be uncovered by studying differentiation of patient stem cells. SIGNIFICANCE: The isolation and study of patient stem cells and the development of methods for the generation of iPSCs have opened up exciting opportunities in understanding causes and exploring new treatments for major diseases. This technology was used to unravel the cellular phenotype in a severe form of inherited osteoarthritis, termed familial osteochondritis dissecans. The phenotypic abnormalities that give rise to cartilage lesions in these patients were able to be described via the generation of chondrocytes from bone marrow-derived mesenchymal stromal cells and iPSCs, illustrating the extraordinary value of these approaches in disease modeling.


Assuntos
Condrócitos/patologia , Estresse do Retículo Endoplasmático/fisiologia , Matriz Extracelular/patologia , Osteocondrite Dissecante/congênito , Adulto , Agrecanas/genética , Animais , Cartilagem/metabolismo , Técnicas de Cultura de Células/métodos , Condrócitos/metabolismo , Condrogênese/fisiologia , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Espectrometria de Massas , Células-Tronco Mesenquimais/citologia , Camundongos , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Osteocondrite Dissecante/genética , Osteocondrite Dissecante/metabolismo , Osteocondrite Dissecante/patologia , Fenótipo
6.
Sci Rep ; 6: 28112, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346849

RESUMO

The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Epigênese Genética , Técnica Indireta de Fluorescência para Anticorpo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Metilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estabilidade Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
7.
Elife ; 42015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26312502

RESUMO

Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Progéria/patologia , Telômero/metabolismo , Humanos , Microscopia , Ligação Proteica
8.
Cell Transplant ; 24(2): 287-304, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24268186

RESUMO

Corneal endothelium-associated corneal blindness is the most common indication for corneal transplantation. Restorative corneal transplant surgery is the only option to reverse the blindness, but a global shortage of donor material remains an issue. There are immense clinical interests in the development of alternative treatment strategies to alleviate current reliance on donor materials. For such endeavors, ex vivo propagation of human corneal endothelial cells (hCECs) is required, but current methodology lacks consistency, with expanded hCECs losing cellular morphology to a mesenchymal-like transformation. In this study, we describe a novel dual media culture approach for the in vitro expansion of primary hCECs. Initial characterization included analysis of growth dynamics of hCECs grown in either proliferative (M4) or maintenance (M5) medium. Subsequent comparisons were performed on isolated hCECs cultured in M4 alone against cells expanded using the dual media approach. Further characterizations were performed using immunocytochemistry, quantitative real-time PCR, and gene expression microarray. At the third passage, results showed that hCECs propagated using the dual media approach were homogeneous in appearance, retained their unique polygonal cellular morphology, and expressed higher levels of corneal endothelium-associated markers in comparison to hCECs cultured in M4 alone, which were heterogeneous and fibroblastic in appearance. Finally, for hCECs cultured using the dual media approach, global gene expression and pathway analysis between confluent hCECs before and after 7-day exposure to M5 exhibited differential gene expression associated predominately with cell proliferation and wound healing. These findings showed that the propagation of primary hCECs using the novel dual media approach presented in this study is a consistent method to obtain bona fide hCECs. This, in turn, will elicit greater confidence in facilitating downstream development of alternative corneal endothelium replacement using tissue-engineered graft materials or cell injection therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Meios de Cultura/farmacologia , Endotélio Corneano/metabolismo , Adolescente , Adulto , Células Cultivadas , Pré-Escolar , Regulação para Baixo , Endotélio Corneano/citologia , Endotélio Corneano/efeitos dos fármacos , Feminino , Humanos , Imuno-Histoquímica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima , Adulto Jovem
9.
Cell Stem Cell ; 15(5): 531-2, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25517458

RESUMO

Somatic cell nuclear transfer offers an alternative approach to the use of exogenous transcription factors for the reprogramming of somatic cells. But is it a better way? Two groups have performed detailed molecular comparisons between human cell lines made by the two methods and report different conclusions.


Assuntos
Impressão Genômica/genética , Taxa de Mutação , Técnicas de Transferência Nuclear , Fases de Leitura Aberta/genética , Células-Tronco Pluripotentes/citologia , Humanos , Masculino
10.
Stem Cell Reports ; 1(5): 379-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24286026

RESUMO

Human embryonic stem cells (hESCs) regularly acquire nonrandom genomic aberrations during culture, raising concerns about their safe therapeutic application. The International Stem Cell Initiative identified a copy number variant (CNV) amplification of chromosome 20q11.21 in 25% of hESC lines displaying a normal karyotype. By comparing four cell lines paired for the presence or absence of this CNV, we show that those containing this amplicon have higher population doubling rates, attributable to enhanced cell survival through resistance to apoptosis. Of the three genes encoded within the minimal amplicon and expressed in hESCs, only overexpression of BCL2L1 (BCL-XL isoform) provides control cells with growth characteristics similar to those of CNV-containing cells, whereas inhibition of BCL-XL suppresses the growth advantage of CNV cells, establishing BCL2L1 as a driver mutation. Amplification of the 20q11.21 region is also detectable in human embryonal carcinoma cell lines and some teratocarcinomas, linking this mutation with malignant transformation.


Assuntos
Cromossomos Humanos Par 20/genética , Variações do Número de Cópias de DNA , Células-Tronco Embrionárias/metabolismo , Seleção Genética , Proteína bcl-X/metabolismo , Linhagem Celular , Amplificação de Genes , Loci Gênicos , Humanos , Mutação , Proteína bcl-X/genética
11.
Nucleus ; 4(4): 283-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23873483

RESUMO

The nuclear lamina underlies the inner nuclear membrane and consists of a proteinaceous meshwork of intermediate filaments: the A- and B-type lamins. Mutations in LMNA (encoding lamin A and C) give rise to a variety of human diseases including muscular dystrophies, cardiomyopathies and the premature aging syndrome progeria (HGPS). Duplication of the LMNB1 locus, leading to elevated levels of lamin B1, causes adult-onset autosomal dominant leukodystrophy (ADLD), a rare genetic disease that leads to demyelination in the central nervous system (CNS). Conversely, reduced levels of lamin B1 have been observed in HGPS patient derived fibroblasts, as well as fibroblasts and keratinocytes undergoing replicative senescence, suggesting that the regulation of lamin B1 is important for cellular physiology and disease. However, the causal relationship between low levels of lamin B1 and cellular senescence and its relevance in vivo remain unclear. How do elevated levels of lamin B1 cause disease and why is the CNS particularly susceptible to lamin B1 fluctuations? Here we summarize recent findings as to how perturbations of lamin B1 affect cellular physiology and discuss the implications this has on senescence, HGPS and ADLD.


Assuntos
Senescência Celular , Doença , Lamina Tipo B/metabolismo , Humanos
12.
PLoS One ; 8(7): e67546, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844023

RESUMO

Considerable interest has been generated for the development of suitable corneal endothelial graft alternatives through cell-tissue engineering, which can potentially alleviate the shortage of corneal transplant material. The advent of less invasive suture-less key-hole surgery options such as Descemet's Stripping Endothelial Keratoplasty (DSEK) and Descemet's Membrane Endothelial Keratoplasty (DMEK), which involve transplantation of solely the endothelial layer instead of full thickness cornea, provide further impetus for the development of alternative endothelial grafts for clinical applications. A major challenge for this endeavor is the lack of specific markers for this cell type. To identify genes that reliably mark corneal endothelial cells (CECs) in vivo and in vitro, we performed RNA-sequencing on freshly isolated human CECs (from both young and old donors), CEC cultures, and corneal stroma. Gene expression of these corneal cell types was also compared to that of other human tissue types. Based on high throughput comparative gene expression analysis, we identified a panel of markers that are: i) highly expressed in CECs from both young donors and old donors; ii) expressed in CECs in vivo and in vitro; and iii) not expressed in corneal stroma keratocytes and the activated corneal stroma fibroblasts. These were SLC4A11, COL8A2 and CYYR1. The use of this panel of genes in combination reliably ascertains the identity of the CEC cell type.


Assuntos
Proteínas de Transporte de Ânions/genética , Antiporters/genética , Colágeno Tipo VIII/genética , Células Endoteliais/metabolismo , Endotélio Corneano/metabolismo , Expressão Gênica , Proteínas de Membrana/genética , Adulto , Idoso , Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Autopsia , Biomarcadores/metabolismo , Colágeno Tipo VIII/metabolismo , Ceratócitos da Córnea/citologia , Ceratócitos da Córnea/metabolismo , Substância Própria/citologia , Substância Própria/metabolismo , Células Endoteliais/citologia , Endotélio Corneano/citologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Especificidade de Órgãos , Cultura Primária de Células
13.
Invest Ophthalmol Vis Sci ; 54(7): 4538-47, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23744997

RESUMO

PURPOSE: There is a lack of definitive cell surface markers to differentiate cultured human corneal endothelial cells (HCECs) from stromal fibroblasts, which could contaminate HCEC cultures. The aim of our study is to discover cell surface antigens on HCECs that can be used to identify and purify HCECs from stromal fibroblasts. METHODS: RNA sequencing (RNA-seq) was used to find differentially overexpressed genes in HCECs and commercial antibodies against these overexpressed antigens were screened by immunofluorescence assay. Similarly, 242 commercial antibodies against cell-surface antigens also were screened. Selected antibodies were used to sort HCECs from stromal fibroblasts by fluorescence-activated cell sorting (FACS). RESULTS: Two monoclonal antibodies, anti-GPC4 and anti-CD200, were identified to stain HCECs specifically. FACS was used successfully to sort HCECs away from stromal fibroblasts. Recovery efficiency of HCECs after sorting using anti-GPC4 antibody was higher compared to anti-CD200 antibody, but purity of HCECs culture using either antibody was comparable. CONCLUSIONS: Taken together, the anti-GPC4 and anti-CD200 antibodies can be useful for purification and identification of HCECs in cultures containing stromal fibroblasts.


Assuntos
Antígenos CD/metabolismo , Substância Própria/citologia , Endotélio Corneano/metabolismo , Fibroblastos/metabolismo , Glipicanas/metabolismo , Anticorpos Monoclonais , Antígenos CD/imunologia , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Substância Própria/metabolismo , Endotélio Corneano/imunologia , Fibroblastos/imunologia , Citometria de Fluxo , Glipicanas/imunologia , Humanos , Reação em Cadeia da Polimerase
15.
J Cell Biol ; 200(5): 605-17, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23439683

RESUMO

The nuclear lamina consists of A- and B-type lamins. Mutations in LMNA cause many human diseases, including progeria, a premature aging syndrome, whereas LMNB1 duplication causes adult-onset autosomal dominant leukodystrophy (ADLD). LMNB1 is reduced in cells from progeria patients, but the significance of this reduction is unclear. In this paper, we show that LMNB1 protein levels decline in senescent human dermal fibroblasts and keratinocytes, mediated by reduced transcription and inhibition of LMNB1 messenger ribonucleic acid (RNA) translation by miRNA-23a. This reduction is also observed in chronologically aged human skin tissue. To determine whether altered LMNB1 levels cause senescence, we either increased or reduced LMNB1. Both LMNB1 depletion and overexpression inhibited proliferation, but only LMNB1 overexpression induced senescence, which was prevented by telomerase expression or inactivation of p53. This phenotype was exacerbated by a simultaneous reduction of LMNA/C. Our results demonstrate that altering LMNB1 levels inhibits proliferation and are relevant to understanding the molecular pathology of ADLD.


Assuntos
Proliferação de Células , Senescência Celular , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Lamina Tipo B/metabolismo , Diferenciação Celular , Células Cultivadas , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Fibroblastos/patologia , Genótipo , Humanos , Queratinócitos/patologia , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Lâmina Nuclear/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , Fenótipo , Interferência de RNA , RNA Mensageiro/metabolismo , Envelhecimento da Pele , Telomerase/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
16.
Hum Mol Genet ; 22(7): 1395-403, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23300193

RESUMO

In this paper, we report a novel heterozygous mutation of A285V codon conversion on exon 4 of the desmin (DES), using whole exome sequencing (WES) in an isolated proband with documented dilated cardiomyopathy (DCM). This mutation is predicted to cause three-dimensional structure changes of DES. Immunohistological and electron microscopy studies demonstrated diffuse abnormal DES aggregations in DCM-induced-pluripotent stem cell (iPSC)-derived cardiomyocytes, and control-iPSC-derived cardiomyocytes transduced with A285V-DES. DCM-iPSC-derived cardiomyocytes also exhibited functional abnormalities in vitro. This is the first demonstration that patient-specific iPSC-derived cardiomyocytes can be used to provide histological and functional confirmation of a suspected genetic basis for DCM identified by WES.


Assuntos
Cardiomiopatia Dilatada/genética , Desmina/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/metabolismo , Adulto , Sequência de Aminoácidos , Sequência de Bases , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/fisiopatologia , Diferenciação Celular , Desmina/química , Desmina/metabolismo , Exoma , Éxons , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Análise de Sequência de DNA , Volume Sistólico/genética , Ultrassonografia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
17.
Bioessays ; 35(3): 271-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23148027

RESUMO

The ability to convert human somatic cells into induced pluripotent stem cells (iPSCs) is allowing the production of custom-tailored cells for drug discovery and for the study of disease phenotypes at the cellular and molecular level. IPSCs have been derived from patients suffering from a large variety of disorders with different severities. In many cases, disease related phenotypes have been observed in iPSCs or their lineage-specific progeny. Several proof of concept studies have demonstrated that these phenotypes can be reversed in vitro using approved drugs. However, several challenges must be overcome to take full advantage of this technology. Here, we highlight recent advances in the field and discuss the main challenges associated with this technology as it applies to disease modelling.


Assuntos
Doença , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Humanos , Fenótipo
18.
Neurobiol Aging ; 34(2): 602-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22595370

RESUMO

The mitochondrial theory of aging argues that oxidative stress, caused by mitochondrial DNA mutations, is associated with decreased adenosine triphosphate (ATP) production leading to cellular degeneration. The rate of this degradation is linked to metabolic demand, with the outer retina having the greatest in the body, showing progressive inflammation, macrophage invasion, and cell loss, resulting in visual decline. Mitochondrial function shifts in vitro after 670-nm light exposure, reducing oxidative stress and increasing ATP production. In vivo, it ameliorates induced pathology. Here, we ask whether 670 nm light shifts mitochondrial function and reduces age-related retinal inflammation. Aged mice were exposed to only five 90-second exposures over 35 hours. This significantly increased mitochondrial membrane polarization and significantly reduced macrophage numbers and tumor necrosis factor (TNF)-alpha levels, a key proinflammatory cytokine. Three additional inflammatory markers were assessed; complement component 3d (C3d), a marker of chronic inflammation and calcitonin, and a systemic inflammatory biomarker were significantly reduced. Complement component 3b (C3b), a marker of acute inflammation, was not significantly altered. These results provide a simple route to combating inflammation in an aging population with declining visual function and may be applicable to clinical conditions where retinal inflammation is a key feature.


Assuntos
Inflamação/terapia , Potencial da Membrana Mitocondrial/fisiologia , Fototerapia , Retina/patologia , Animais , Calcitonina/metabolismo , Complemento C3d/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Estresse Oxidativo/fisiologia , Retina/metabolismo , Retina/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Regen Med ; 7(3): 439-48, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22594334

RESUMO

Prompted by an increased interest of both research participants and the patient advocacy community in obtaining information about research outcomes and on the use of their biological samples; the international community has begun to debate the emergence of an ethical 'duty' to return research results to participants. Furthermore, the use of new technologies (e.g., whole-genome and -exome sequencing) has revealed both genetic data and incidental findings with possible clinical significance. These technologies together with the proliferation of biorepositories, provide a compelling rationale for governments and scientific institutions to adopt prospective policies. Given the scarcity of policies in the context of stem cell research, a discussion on the scientific, ethical and legal implications of disclosing research results for research participants is needed. We present the International Stem Forum Ethics Working Party's Policy Statement and trust that it will stimulate debate and meet the concerns of researchers and research participants alike.


Assuntos
Revelação/ética , Políticas , Pesquisa com Células-Tronco/ética , Bancos de Tecidos/ética , Diretrizes para o Planejamento em Saúde , Humanos
20.
Cardiovasc Res ; 94(3): 418-27, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22345307

RESUMO

AIMS: The factors responsible for cardiomyopathy are not fully understood. Our studies of the transcriptome of human embryonic stem cell-derived cardiomyocytes identified novel genes up-regulated during cardiac differentiation, including RBM24. We therefore studied how its deficiency affected heart development. METHODS AND RESULTS: The expression of Rbm24 was detected in mouse cardiomyocytes and embryonic myocardium of zebrafish at the RNA and protein level. The Rbm24 loss-of-function showed that Rbm24 deficiency resulted in a reduction in sarcomeric proteins, Z-disc abnormality, and diminished heart contractility, resulting in the absence of circulation in zebrafish embryos. Gene expression profiling revealed down-regulation of multiple pathways associated with sarcomere assembly and vasculature development in Rbm24 deficiency. CONCLUSION: We identified a novel role of the tissue-specific RNA-binding protein (RBP) Rbm24 involving in the regulation of cardiac gene expression, sarcomeric assembly, and cardiac contractility. This study uncovers a potential novel pathway to cardiomyopathy through down-regulation of the RBP Rbm24.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sarcômeros/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Ligação a RNA/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...