Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 544(7651): 427-433, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28447635

RESUMO

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Núcleo Celular/genética , Centrômero/genética , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Variação Genética , Genômica , Haplótipos/genética , Meiose/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sementes/genética
2.
Sci Data ; 4: 170044, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28448065

RESUMO

Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. 'Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).


Assuntos
Genoma de Planta , Hordeum/genética , Mapeamento Cromossômico , Análise de Sequência
3.
Plant Genome ; 9(1)2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27898761

RESUMO

The genome sequences of many important Triticeae species, including bread wheat ( L.) and barley ( L.), remained uncharacterized for a long time because their high repeat content, large sizes, and polyploidy. As a result of improvements in sequencing technologies and novel analyses strategies, several of these have recently been deciphered. These efforts have generated new insights into Triticeae biology and genome organization and have important implications for downstream usage by breeders, experimental biologists, and comparative genomicists. transPLANT () is an EU-funded project aimed at constructing hardware, software, and data infrastructure for genome-scale research in the life sciences. Since the Triticeae data are intrinsically complex, heterogenous, and distributed, the transPLANT consortium has undertaken efforts to develop common data formats and tools that enable the exchange and integration of data from distributed resources. Here we present an overview of the individual Triticeae genome resources hosted by transPLANT partners, introduce the objectives of transPLANT, and outline common developments and interfaces supporting integrated data access.


Assuntos
Genoma de Planta , Genômica/métodos , Poaceae/genética , Evolução Molecular , Hordeum/genética , Poliploidia , Triticum/genética
4.
Sci Data ; 2: 150072, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26647166

RESUMO

Brassica napus (oilseed rape, canola) is one of the world's most important sources of vegetable oil for human nutrition and biofuel, and also a model species for studies investigating the evolutionary consequences of polyploidisation. Strong bottlenecks during its recent origin from interspecific hybridisation, and subsequently through intensive artificial selection, have severely depleted the genetic diversity available for breeding. On the other hand, high-throughput genome profiling technologies today provide unprecedented scope to identify, characterise and utilise genetic diversity in primary and secondary crop gene pools. Such methods also enable implementation of genomic selection strategies to accelerate breeding progress. The key prerequisite is availability of high-quality sequence data and identification of high-quality, genome-wide sequence polymorphisms representing relevant gene pools. We present comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs. The data is of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants.


Assuntos
Genoma de Planta , Brassica napus/genética , Cruzamento , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo Genético , Especificidade da Espécie
6.
Plant Cell Physiol ; 56(1): e8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25480116

RESUMO

With the number of sequenced plant genomes growing, the number of predicted genes and functional annotations is also increasing. The association between genes and phenotypic traits is currently of great interest. Unfortunately, the information available today is widely scattered over a number of different databases. Information retrieval (IR) has become an all-encompassing bioinformatics methodology for extracting knowledge from complex, heterogeneous and distributed databases, and therefore can be a useful tool for obtaining a comprehensive view of plant genomics, from genes to traits. Here we describe LAILAPS (http://lailaps.ipk-gatersleben.de), an IR system designed to link plant genomic data in the context of phenotypic attributes for a detailed forward genetic research. LAILAPS comprises around 65 million indexed documents, encompassing >13 major life science databases with around 80 million links to plant genomic resources. The LAILAPS search engine allows fuzzy querying for candidate genes linked to specific traits over a loosely integrated system of indexed and interlinked genome databases. Query assistance and an evidence-based annotation system enable time-efficient and comprehensive information retrieval. An artificial neural network incorporating user feedback and behavior tracking allows relevance sorting of results. We fully describe LAILAPS's functionality and capabilities by comparing this system's performance with other widely used systems and by reporting both a validation in maize and a knowledge discovery use-case focusing on candidate genes in barley.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Genoma de Planta/genética , Plantas/genética , Ferramenta de Busca , Interface Usuário-Computador
7.
BMC Bioinformatics ; 15: 214, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24958009

RESUMO

BACKGROUND: The life-science community faces a major challenge in handling "big data", highlighting the need for high quality infrastructures capable of sharing and publishing research data. Data preservation, analysis, and publication are the three pillars in the "big data life cycle". The infrastructures currently available for managing and publishing data are often designed to meet domain-specific or project-specific requirements, resulting in the repeated development of proprietary solutions and lower quality data publication and preservation overall. RESULTS: e!DAL is a lightweight software framework for publishing and sharing research data. Its main features are version tracking, metadata management, information retrieval, registration of persistent identifiers (DOI), an embedded HTTP(S) server for public data access, access as a network file system, and a scalable storage backend. e!DAL is available as an API for local non-shared storage and as a remote API featuring distributed applications. It can be deployed "out-of-the-box" as an on-site repository. CONCLUSIONS: e!DAL was developed based on experiences coming from decades of research data management at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). Initially developed as a data publication and documentation infrastructure for the IPK's role as a data center in the DataCite consortium, e!DAL has grown towards being a general data archiving and publication infrastructure. The e!DAL software has been deployed into the Maven Central Repository. Documentation and Software are also available at: http://edal.ipk-gatersleben.de.


Assuntos
Bases de Dados Factuais , Disseminação de Informação , Software
8.
BMC Genomics ; 14: 442, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23822863

RESUMO

BACKGROUND: Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. RESULTS: To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. CONCLUSIONS: Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation.


Assuntos
Adaptação Fisiológica , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Estresse Fisiológico , Zea mays/metabolismo , Adaptação Fisiológica/genética , Perfilação da Expressão Gênica , Homeostase , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Estresse Fisiológico/genética , Temperatura , Zea mays/genética , Zea mays/fisiologia
9.
Plant Physiol ; 160(3): 1384-406, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22972706

RESUMO

Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.


Assuntos
Adaptação Fisiológica , Carbono/metabolismo , Nitrogênio/deficiência , Nitrogênio/metabolismo , Fosfatos/metabolismo , Zea mays/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Aminoácidos/metabolismo , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Metaboloma/genética , Nitrogênio/farmacologia , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/crescimento & desenvolvimento
10.
Nucleic Acids Res ; 40(Database issue): D1173-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22086948

RESUMO

MetaCrop is a manually curated repository of high-quality data about plant metabolism, providing different levels of detail from overview maps of primary metabolism to kinetic data of enzymes. It contains information about seven major crop plants with high agronomical importance and two model plants. MetaCrop is intended to support research aimed at the improvement of crops for both nutrition and industrial use. It can be accessed via web, web services and an add-on to the Vanted software. Here, we present several novel developments of the MetaCrop system and the extended database content. MetaCrop is now available in version 2.0 at http://metacrop.ipk-gatersleben.de.


Assuntos
Produtos Agrícolas/metabolismo , Bases de Dados Factuais , Gráficos por Computador , Produtos Agrícolas/enzimologia , Internet , Interface Usuário-Computador
11.
BMC Plant Biol ; 12: 245, 2012 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-23272737

RESUMO

BACKGROUND: Maize is a major crop plant, grown for human and animal nutrition, as well as a renewable resource for bioenergy. When looking at the problems of limited fossil fuels, the growth of the world's population or the world's climate change, it is important to find ways to increase the yield and biomass of maize and to study how it reacts to specific abiotic and biotic stress situations. Within the OPTIMAS systems biology project maize plants were grown under a large set of controlled stress conditions, phenotypically characterised and plant material was harvested to analyse the effect of specific environmental conditions or developmental stages. Transcriptomic, metabolomic, ionomic and proteomic parameters were measured from the same plant material allowing the comparison of results across different omics domains. A data warehouse was developed to store experimental data as well as analysis results of the performed experiments. DESCRIPTION: The OPTIMAS Data Warehouse (OPTIMAS-DW) is a comprehensive data collection for maize and integrates data from different data domains such as transcriptomics, metabolomics, ionomics, proteomics and phenomics. Within the OPTIMAS project, a 44K oligo chip was designed and annotated to describe the functions of the selected unigenes. Several treatment- and plant growth stage experiments were performed and measured data were filled into data templates and imported into the data warehouse by a Java based import tool. A web interface allows users to browse through all stored experiment data in OPTIMAS-DW including all data domains. Furthermore, the user can filter the data to extract information of particular interest. All data can be exported into different file formats for further data analysis and visualisation. The data analysis integrates data from different data domains and enables the user to find answers to different systems biology questions. Finally, maize specific pathway information is provided. CONCLUSIONS: With OPTIMAS-DW a data warehouse for maize was established, which is able to handle different data domains, comprises several analysis results that will support researchers within their work and supports systems biological research in particular. The system is available at http://www.optimas-bioenergy.org/optimas_dw.


Assuntos
Biologia Computacional , Sistemas de Gerenciamento de Base de Dados , Zea mays , Bases de Dados Factuais , Internet , Metabolômica , Proteômica , Interface Usuário-Computador , Zea mays/química , Zea mays/genética , Zea mays/metabolismo
12.
Plant Cell ; 23(12): 4208-20, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22186372

RESUMO

We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.


Assuntos
Fotossíntese , Folhas de Planta/fisiologia , Zea mays/fisiologia , Clorofila/análise , Clorofila/química , Análise por Conglomerados , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Malatos/química , Metaboloma , Oxigênio/química , Folhas de Planta/química , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ácido Pirúvico/química , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Transcriptoma , Zea mays/química , Zea mays/genética
13.
BMC Res Notes ; 4: 413, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22005096

RESUMO

BACKGROUND: In modern life science research it is very important to have an efficient management of high throughput primary lab data. To realise such an efficient management, four main aspects have to be handled: (I) long term storage, (II) security, (III) upload and (IV) retrieval. FINDINGS: In this paper we define central requirements for a primary lab data management and discuss aspects of best practices to realise these requirements. As a proof of concept, we introduce a pipeline that has been implemented in order to manage primary lab data at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). It comprises: (I) a data storage implementation including a Hierarchical Storage Management system, a relational Oracle Database Management System and a BFiler package to store primary lab data and their meta information, (II) the Virtual Private Database (VPD) implementation for the realisation of data security and the LIMS Light application to (III) upload and (IV) retrieve stored primary lab data. CONCLUSIONS: With the LIMS Light system we have developed a primary data management system which provides an efficient storage system with a Hierarchical Storage Management System and an Oracle relational database. With our VPD Access Control Method we can guarantee the security of the stored primary data. Furthermore the system provides high performance upload and download and efficient retrieval of data.

14.
J Integr Bioinform ; 7(3)2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20375443

RESUMO

Crop plants play a major role in human and animal nutrition and increasingly contribute to chemical or pharmaceutical industry and renewable resources. In order to achieve important goals, such as the improvement of growth or yield, it is indispensable to understand biological processes on a detailed level. Therefore, the well-structured management of fine-grained information about metabolic pathways is of high interest. Thus, we developed the MetaCrop information system, a manually curated repository of high quality information concerning the metabolism of crop plants. However, the data access to and flexible export of information of MetaCrop in standard exchange formats had to be improved. To automate and accelerate the data access we designed a set of web services to be integrated into external software. These web services have already been used by an add-on for the visualisation toolkit VANTED. Furthermore, we developed an export feature for the MetaCrop web interface, thus enabling the user to compose individual metabolic models using SBML.


Assuntos
Produtos Agrícolas/metabolismo , Sistemas de Informação , Biologia de Sistemas/métodos , Internet , Software
15.
J Integr Bioinform ; 7(3)2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-20375444

RESUMO

Efficient and effective information retrieval in life sciences is one of the most pressing challenge in bioinformatics. The incredible growth of life science databases to a vast network of interconnected information systems is to the same extent a big challenge and a great chance for life science research. The knowledge found in the Web, in particular in life-science databases, are a valuable major resource. In order to bring it to the scientist desktop, it is essential to have well performing search engines. Thereby, not the response time nor the number of results is important. The most crucial factor for millions of query results is the relevance ranking. In this paper, we present a feature model for relevance ranking in life science databases and its implementation in the LAILAPS search engine. Motivated by the observation of user behavior during their inspection of search engine result, we condensed a set of 9 relevance discriminating features. These features are intuitively used by scientists, who briefly screen database entries for potential relevance. The features are both sufficient to estimate the potential relevance, and efficiently quantifiable. The derivation of a relevance prediction function that computes the relevance from this features constitutes a regression problem. To solve this problem, we used artificial neural networks that have been trained with a reference set of relevant database entries for 19 protein queries. Supporting a flexible text index and a simple data import format, this concepts are implemented in the LAILAPS search engine. It can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. LAILAPS is publicly available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.


Assuntos
Disciplinas das Ciências Biológicas , Bases de Dados Factuais , Ferramenta de Busca , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...