Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400136

RESUMO

The Interferon Stimulated Gene 15 (ISG15), a unique Ubiquitin-like (Ubl) modifier exclusive to vertebrates, plays a crucial role in the immune system. Primarily induced by interferon (IFN) type I, ISG15 functions through diverse mechanisms: (i) covalent protein modification (ISGylation); (ii) non-covalent intracellular action; and (iii) exerting extracellular cytokine activity. These various roles highlight its versatility in influencing numerous cellular pathways, encompassing DNA damage response, autophagy, antiviral response, and cancer-related processes, among others. The well-established antiviral effects of ISGylation contrast with its intriguing dual role in cancer, exhibiting both suppressive and promoting effects depending on the tumour type. The multifaceted functions of ISG15 extend beyond intracellular processes to extracellular cytokine signalling, influencing immune response, chemotaxis, and anti-tumour effects. Moreover, ISG15 emerges as a promising adjuvant in vaccine development, enhancing immune responses against viral antigens and demonstrating efficacy in cancer models. As a therapeutic target in cancer treatment, ISG15 exhibits a double-edged nature, promoting or suppressing oncogenesis depending on the tumour context. This review aims to contribute to future studies exploring the role of ISG15 in immune modulation and cancer therapy, potentially paving the way for the development of novel therapeutic interventions, vaccine development, and precision medicine.

2.
Front Cell Infect Microbiol ; 13: 1187193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313341

RESUMO

The human immunodeficiency virus (HIV), responsible of the Acquired Immune Deficiency Syndrome (AIDS), continues to be a major global public health issue with any cure or vaccine available. The Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is induced by interferons and plays a critical role in the immune response. ISG15 is a modifier protein that covalently binds to its targets via a reversible bond, a process known as ISGylation, which is the best-characterized activity of this protein to date. However, ISG15 can also interact with intracellular proteins via non-covalent binding or act as a cytokine in the extracellular space after secretion. In previous studies we proved the adjuvant effect of ISG15 when delivered by a DNA-vector in heterologous prime-boost combination with a Modified Vaccinia virus Ankara (MVA)-based recombinant virus expressing HIV-1 antigens Env/Gag-Pol-Nef (MVA-B). Here we extended these results evaluating the adjuvant effect of ISG15 when expressed by an MVA vector. For this, we generated and characterized two novel MVA recombinants expressing different forms of ISG15, the wild-type ISG15GG (able to perform ISGylation) or the mutated ISG15AA (unable to perform ISGylation). In mice immunized with the heterologous DNA prime/MVA boost regimen, the expression of the mutant ISG15AA from MVA-Δ3-ISG15AA vector in combination with MVA-B induced an increase in the magnitude and quality of HIV-1-specific CD8 T cells as well as in the levels of IFN-I released, providing a better immunostimulatory activity than the wild-type ISG15GG. Our results confirm the importance of ISG15 as an immune adjuvant in the vaccine field and highlights its role as a potential relevant component in HIV-1 immunization protocols.


Assuntos
HIV-1 , Interferon Tipo I , Humanos , Animais , Camundongos , HIV-1/genética , Vaccinia virus/genética , Adjuvantes Imunológicos , Linfócitos T CD8-Positivos , Imunidade , Ubiquitinas/genética , Citocinas
3.
Microbiol Spectr ; 11(3): e0450822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036376

RESUMO

Viruses have developed many different strategies to counteract immune responses, and Vaccinia virus (VACV) is one of a kind in this aspect. To ensure an efficient infection, VACV undergoes a complex morphogenetic process resulting in the production of two types of infective virions: intracellular mature virus (MV) and extracellular enveloped virus (EV), whose spread depends on different dissemination mechanisms. MVs disseminate after cell lysis, whereas EVs are released or propelled in actin tails from living cells. Here, we show that ISG15 participates in the control of VACV dissemination. Infection of Isg15-/- mouse embryonic fibroblasts with VACV International Health Department-J (IHD-J) strain resulted in decreased EV production, concomitant with reduced induction of actin tails and the abolition of comet-shaped plaque formation, compared to Isg15+/+ cells. Transmission electron microscopy revealed the accumulation of intracellular virus particles and a decrease in extracellular virus particles in the absence of interferon-stimulated gene 15 (ISG15), a finding consistent with altered virus egress. Immunoblot and quantitative proteomic analysis of sucrose gradient-purified virions from both genotypes reported differences in protein levels and composition of viral proteins present on virions, suggesting an ISG15-mediated control of viral proteome. Lastly, the generation of a recombinant IHD-J expressing V5-tagged ISG15 (IHD-J-ISG15) allowed us to identify several viral proteins as potential ISG15 targets, highlighting the proteins A34 and A36, which are essential for EV formation. Altogether, our results indicate that ISG15 is an important host factor in the regulation of VACV dissemination. IMPORTANCE Viral infections are a constant battle between the virus and the host. While the host's only goal is victory, the main purpose of the virus is to spread and conquer new territories at the expense of the host's resources. Along millions of years of incessant encounters, poxviruses have developed a unique strategy consisting in the production two specialized "troops": intracellular mature virions (MVs) and extracellular virions (EVs). MVs mediate transmission between hosts, and EVs ensure advance on the battlefield mediating the long-range dissemination. The mechanism by which the virus "decides" to shed from the primary site of infection and its significant impact in viral transmission is not yet fully established. Here, we demonstrate that this process is finely regulated by ISG15/ISGylation, an interferon-induced ubiquitin-like protein with broad antiviral activity. Studying the mechanism that viruses use during infection could result in new ways of understanding our perpetual war against disease and how we might win the next great battle.


Assuntos
Interferons , Vaccinia virus , Animais , Camundongos , Vaccinia virus/genética , Actinas/metabolismo , Proteômica , Fibroblastos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética
4.
Mikrochim Acta ; 189(4): 171, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364748

RESUMO

Gold nanotriangles (AuNTs) functionalized with dithiolated oligonucleotides have been employed to develop an amplification-free electrochemical biosensor for SARS-CoV-2 in patient samples. Gold nanotriangles, prepared through a seed-mediated growth method and exhaustively characterized by different techniques, serve as an improved electrochemical platform and for DNA probe immobilization. Azure A is used as an electrochemical indicator of the hybridization event. The biosensor detects either single stranded DNA or RNA sequences of SARS-CoV-2 of different lengths, with a low detection limit of 22.2 fM. In addition, it allows to detect point mutations in SARS-CoV-2 genome with the aim to detect more infective SARS-CoV-2 variants such as Alpha, Beta, Gamma, Delta, and Omicron. Results obtained with the biosensor in nasopharyngeal swab samples from COVID-19 patients show the possibility to clearly discriminate between non-infected and infected patient samples as well as patient samples with different viral load. Furthermore, the results correlate well with those obtained by the gold standard technique RT-qPCR, with the advantage of avoiding the amplification process and the need of sophisticated equipment.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Hibridização de Ácido Nucleico , Oligonucleotídeos , SARS-CoV-2/genética
5.
Anal Chim Acta ; 1205: 339749, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414398

RESUMO

The COVID-19 pandemic has brought to light the need for fast and sensitive detection methods to prevent the spread of pathogens. The scientific community is making a great effort to design new molecular detection methods suitable for fast point-of-care applications. In this regard, a variety of approaches have been developed or optimized, including isothermal amplification of viral nucleic acids, CRISPR-mediated target recognition, and read-out systems based on nanomaterials. Herein, we present CASCADE (CRISPR/CAS-based Colorimetric nucleic Acid DEtection), a sensing system for fast and specific naked-eye detection of SARS-CoV-2 RNA. In this approach, viral RNA is recognized by the LwaCas13a CRISPR protein, which activates its collateral RNase activity. Upon target recognition, Cas13a cleaves ssRNA oligonucleotides conjugated to gold nanoparticles (AuNPs), thus inducing their colloidal aggregation, which can be easily visualized. After an exhaustive optimization of functionalized AuNPs, CASCADE can detect picomolar concentrations of SARS-CoV-2 RNA. This sensitivity is further increased to low femtomolar (3 fM) and even attomolar (40 aM) ranges when CASCADE is coupled to RPA or NASBA isothermal nucleic acid amplification, respectively. We finally demonstrate that CASCADE succeeds in detecting SARS-CoV-2 in clinical samples from nasopharyngeal swabs. In conclusion, CASCADE is a fast and versatile RNA biosensor that can be coupled to different isothermal nucleic acid amplification methods for naked-eye diagnosis of infectious diseases.


Assuntos
COVID-19 , Nanopartículas Metálicas , Ácidos Nucleicos , COVID-19/diagnóstico , Sistemas CRISPR-Cas , Ouro , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética
6.
Talanta ; 243: 123393, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325745

RESUMO

We present a fast, reliable and easy to scale-up colorimetric sensor based on gold nanoparticles (AuNPs) to detect the sequences coding for the RdRp, E, and S proteins of SARS-CoV-2. The optimization of the system (so-called "the sensor") includes the evaluation of different sizes of nanoparticles, sequences of oligonucleotides and buffers. It is stable for months without any noticeable decrease in its activity, allowing the detection of SARS-CoV-2 sequences by the naked eye in 15 min. The efficiency and selectivity of detection, in terms of significative colorimetric changes in the solution upon target recognition, are qualitatively (visually) and quantitatively (absorbance measurements) assessed using synthetic samples and samples derived from infected cells and patients. Furthermore, an easy and affordable amplification approach is implemented to increase the system's sensitivity for detecting high and medium viral loads (≥103 - 104 viral RNA copies/µl) in patient samples. The whole process (amplification and detection) takes 2.5 h. Due to the ease of use, stability and minimum equipment requirements, the proposed approach can be a valuable tool for the detection of SARS-CoV-2 at facilities with limited resources.


Assuntos
COVID-19 , Nanopartículas Metálicas , COVID-19/diagnóstico , Colorimetria , Ouro , Humanos , RNA Viral/genética , RNA Polimerase Dependente de RNA , SARS-CoV-2/genética
7.
Nat Microbiol ; 5(5): 727-734, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152587

RESUMO

The influenza virus genome consists of eight viral ribonucleoproteins (vRNPs), each consisting of a copy of the polymerase, one of the genomic RNA segments and multiple copies of the nucleoprotein arranged in a double helical conformation. vRNPs are macromolecular machines responsible for messenger RNA synthesis and genome replication, that is, the formation of progeny vRNPs. Here, we describe the structural basis of the transcription process. The mechanism, which we call the 'processive helical track', is based on the extreme flexibility of the helical part of the vRNP that permits a sliding movement between both antiparallel nucleoprotein-RNA strands, thereby allowing the polymerase to move over the genome while bound to both RNA ends. Accordingly, we demonstrate that blocking this movement leads to inhibition of vRNP transcriptional activity. This mechanism also reveals a critical role of the nucleoprotein in maintaining the double helical structure throughout the copying process to make the RNA template accessible to the polymerase.


Assuntos
Vírus da Influenza A/fisiologia , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Sítios de Ligação , Vírus da Influenza A/genética , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Viral/genética , Recombinação Genética , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
8.
Science ; 338(6114): 1634-7, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23180776

RESUMO

The influenza viruses cause annual epidemics of respiratory disease and occasional pandemics, which constitute a major public-health issue. The segmented negative-stranded RNAs are associated with the polymerase complex and nucleoprotein (NP), forming ribonucleoproteins (RNPs), which are responsible for virus transcription and replication. We describe the structure of native RNPs derived from virions. They show a double-helical conformation in which two NP strands of opposite polarity are associated with each other along the helix. Both strands are connected by a short loop at one end of the particle and interact with the polymerase complex at the other end. This structure will be relevant for unraveling the mechanisms of nuclear import of parental virus RNPs, their transcription and replication, and the encapsidation of progeny RNPs into virions.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , RNA Viral/química , Ribonucleoproteínas/química , Proteínas Virais/química , Vírion/química , Animais , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Células Madin Darby de Rim Canino , Microscopia Eletrônica , Modelos Moleculares , Proteínas do Nucleocapsídeo , Conformação Proteica , Estrutura Secundária de Proteína , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/ultraestrutura , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Transcrição Gênica , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/ultraestrutura , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura , Vírion/ultraestrutura
9.
RNA Biol ; 8(2): 207-15, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21358279

RESUMO

The influenza A viruses are the causative agents of respiratory disease that occurs as yearly epidemics and occasional pandemics. These viruses are endemic in wild avian species and can sometimes break the species barrier to infect and generate new virus lineages in humans. The influenza A virus genome consists of eight single-stranded, negative-polarity RNAs that form ribonucleoprotein complexes by association to the RNA polymerase and the nucleoprotein. In this review we focus on the structure of this RNA-synthesis machines and the included RNA polymerase, and on the mechanisms by which they express their genetic information as mRNAs and generate progeny ribonucleoproteins that will become incorporated into new infectious virions. New structural, biochemical and genetic data are rapidly accumulating in this very active area of research. We discuss these results and attempt to integrate the information into structural and functional models that may help the design of new experiments and further our knowledge on virus RNA replication and gene expression. This interplay between structural and functional data will eventually provide new targets for controlled attenuation or antiviral therapy.


Assuntos
Vírus da Influenza A/química , Vírus da Influenza A/genética , RNA Viral/biossíntese , RNA Viral/química , Animais , Regulação Viral da Expressão Gênica , Humanos , Vírus da Influenza A/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Replicação Viral
10.
PLoS Pathog ; 5(6): e1000491, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19557158

RESUMO

The influenza viruses contain a segmented, single-stranded RNA genome of negative polarity. Each RNA segment is encapsidated by the nucleoprotein and the polymerase complex into ribonucleoprotein particles (RNPs), which are responsible for virus transcription and replication. Despite their importance, information about the structure of these RNPs is scarce. We have determined the three-dimensional structure of a biologically active recombinant RNP by cryo-electron microscopy. The structure shows a nonameric nucleoprotein ring (at 12 Angstrom resolution) with two monomers connected to the polymerase complex (at 18 Angstrom resolution). Docking the atomic structures of the nucleoprotein and polymerase domains, as well as mutational analyses, has allowed us to define the interactions between the functional elements of the RNP and to propose the location of the viral RNA. Our results provide the first model for a functional negative-stranded RNA virus ribonucleoprotein complex. The structure reported here will serve as a framework to generate a quasi-atomic model of the molecular machine responsible for viral RNA synthesis and to test new models for virus RNA replication and transcription.


Assuntos
Vírus da Influenza A/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Microscopia Crioeletrônica , Vírus da Influenza A/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/genética , RNA/isolamento & purificação , RNA/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Ribonucleases/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas Virais/química
11.
PLoS Pathog ; 5(5): e1000462, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19478885

RESUMO

The influenza A viruses genome comprises eight single-stranded RNA segments of negative polarity. Each one is included in a ribonucleoprotein particle (vRNP) containing the polymerase complex and a number of nucleoprotein (NP) monomers. Viral RNA replication proceeds by formation of a complementary RNP of positive polarity (cRNP) that serves as intermediate to generate many progeny vRNPs. Transcription initiation takes place by a cap-snatching mechanism whereby the polymerase steals a cellular capped oligonucleotide and uses it as primer to copy the vRNP template. Transcription termination occurs prematurely at the polyadenylation signal, which the polymerase copies repeatedly to generate a 3'-terminal polyA. Here we studied the mechanisms of the viral RNA replication and transcription. We used efficient systems for recombinant RNP transcription/replication in vivo and well-defined polymerase mutants deficient in either RNA replication or transcription to address the roles of the polymerase complex present in the template RNP and newly synthesised polymerase complexes during replication and transcription. The results of trans-complementation experiments showed that soluble polymerase complexes can synthesise progeny RNA in trans and become incorporated into progeny vRNPs, but only transcription in cis could be detected. These results are compatible with a new model for virus RNA replication, whereby a template RNP would be replicated in trans by a soluble polymerase complex and a polymerase complex distinct from the replicative enzyme would direct the encapsidation of progeny vRNA. In contrast, transcription of the vRNP would occur in cis and the resident polymerase complex would be responsible for mRNA synthesis and polyadenylation.


Assuntos
Teste de Complementação Genética , Vírus da Influenza A/genética , RNA Viral/genética , Transcrição Gênica/genética , Replicação Viral/genética , RNA Polimerases Dirigidas por DNA/genética , Vírus da Influenza A/fisiologia , Ribonucleoproteínas/genética
12.
Nat Struct Mol Biol ; 15(5): 500-6, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18454157

RESUMO

Influenza virus mRNAs are synthesized by the trimeric viral polymerase using short capped primers obtained by a 'cap-snatching' mechanism. The polymerase PB2 subunit binds the 5' cap of host pre-mRNAs, which are cleaved after 10-13 nucleotides by the PB1 subunit. Using a library-screening method, we identified an independently folded domain of PB2 that has specific cap binding activity. The X-ray structure of the domain with bound cap analog m(7)GTP at 2.3-A resolution reveals a previously unknown fold and a mode of ligand binding that is similar to, but distinct from, other cap binding proteins. Binding and functional studies with point mutants confirm that the identified site is essential for cap binding in vitro and cap-dependent transcription in vivo by the trimeric polymerase complex. These findings clarify the nature of the cap binding site in PB2 and will allow efficient structure-based design of new anti-influenza compounds inhibiting viral transcription.


Assuntos
Vírus da Influenza A/metabolismo , Capuzes de RNA/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Linhagem Celular , Humanos , Vírus da Influenza A/química , Mutação Puntual , Estrutura Terciária de Proteína , Análogos de Capuz de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Transcrição Gênica , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...