Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
Nat Commun ; 15(1): 273, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177201

RESUMO

Rapidly renewable tissues adapt different strategies to cope with environmental insults. While tissue repair is associated with increased intestinal stem cell (ISC) proliferation and accelerated tissue turnover rates, reduced calorie intake triggers a homeostasis-breaking process causing adaptive resizing of the gut. Here we show that activins are key drivers of both adaptive and regenerative growth. Activin-ß (Actß) is produced by stem and progenitor cells in response to intestinal infections and stimulates ISC proliferation and turnover rates to promote tissue repair. Dawdle (Daw), a divergent Drosophila activin, signals through its receptor, Baboon, in progenitor cells to promote their maturation into enterocytes (ECs). Daw is dynamically regulated during starvation-refeeding cycles, where it couples nutrient intake with progenitor maturation and adaptive resizing of the gut. Our results highlight an activin-dependent mechanism coupling nutrient intake with progenitor-to-EC maturation to promote adaptive resizing of the gut and further establish activins as key regulators of adult tissue plasticity.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ativinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Enterócitos/metabolismo , Proliferação de Células , Drosophila melanogaster/metabolismo
3.
FEBS Lett ; 597(19): 2416-2432, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567762

RESUMO

Tumor necrosis factor (TNF)-α is a highly conserved proinflammatory cytokine with important functions in immunity, tissue repair, and cellular homeostasis. Due to the simplicity of the Drosophila TNF-TNF receptor (TNFR) system and a broad genetic toolbox, the fly has played a pivotal role in deciphering the mechanisms underlying TNF-mediated physiological and pathological functions. In this review, we summarize the recent advances in our understanding of how local and systemic sources of Egr/TNF contribute to its antitumor and tumor-promoting properties, and its emerging functions in adaptive growth responses, sleep regulation, and adult tissue homeostasis. The recent annotation of TNF as an adipokine and its indisputable contribution to obesity- and cancer-associated metabolic diseases have provoked a new area of research focusing on its dual function in regulating immunity and energy homeostasis. Here, we discuss the role of TNFR signaling in coupling immune and metabolic processes and how this might be relevant in the adaption of host to environmental stresses, or, in the case of obesity, promote metabolic derangements and disease.

4.
Sci Adv ; 9(23): eadd4977, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294765

RESUMO

It is well established that tumor necrosis factor (TNF) plays an instrumental role in orchestrating the metabolic disorders associated with late stages of cancers. However, it is not clear whether TNF/TNF receptor (TNFR) signaling controls energy homeostasis in healthy individuals. Here, we show that the highly conserved Drosophila TNFR, Wengen (Wgn), is required in the enterocytes (ECs) of the adult gut to restrict lipid catabolism, suppress immune activity, and maintain tissue homeostasis. Wgn limits autophagy-dependent lipolysis by restricting cytoplasmic levels of the TNFR effector, TNFR-associated factor 3 (dTRAF3), while it suppresses immune processes through inhibition of the dTAK1/TAK1-Relish/NF-κB pathway in a dTRAF2-dependent manner. Knocking down dTRAF3 or overexpressing dTRAF2 is sufficient to suppress infection-induced lipid depletion and immune activation, respectively, showing that Wgn/TNFR functions as an intersection between metabolism and immunity allowing pathogen-induced metabolic reprogramming to fuel the energetically costly task of combatting an infection.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , NF-kappa B/metabolismo , Metabolismo Energético , Lipídeos , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
5.
Nat Commun ; 12(1): 2070, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824334

RESUMO

The Drosophila tumour necrosis factor (TNF) ligand-receptor system consists of a unique ligand, Eiger (Egr), and two receptors, Grindelwald (Grnd) and Wengen (Wgn), and therefore provides a simple system for exploring the interplay between ligand and receptors, and the requirement for Grnd and Wgn in TNF/Egr-mediated processes. Here, we report the crystallographic structure of the extracellular domain (ECD) of Grnd in complex with Egr, a high-affinity hetero-hexameric assembly reminiscent of human TNF:TNFR complexes. We show that ectopic expression of Egr results in internalisation of Egr:Grnd complexes in vesicles, a step preceding and strictly required for Egr-induced apoptosis. We further demonstrate that Wgn binds Egr with much reduced affinity and is localised in intracellular vesicles that are distinct from those containing Egr:Grnd complexes. Altogether, our data provide insight into ligand-mediated activation of Grnd and suggest that distinct affinities of TNF ligands for their receptors promote different and non-redundant cellular functions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Vesículas Citoplasmáticas/metabolismo , Proteínas de Drosophila/química , Endocitose , Discos Imaginais/citologia , Discos Imaginais/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas
6.
Wiley Interdiscip Rev Dev Biol ; 9(6): e378, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32174007

RESUMO

Multicellular organisms have evolved organs and tissues with highly specialized tasks. For instance, nutrients are assimilated by the gut, sensed, processed, stored, and released by adipose tissues and liver to provide energy consumed by peripheral organ activities. The function of each organ is modified by local clues and systemic signals derived from other organs to ensure a coordinated response accommodating the physiological needs of the organism. The intestine, which represents one of the largest interfaces between the internal and external environment, plays a key role in sensing and relaying environmental inputs such as nutrients and microbial derivatives to other organs to produce systemic responses. In turn, gut physiology and immunity are regulated by multiple signals emanating from other organs including the brain and the adipose tissues. In this review, we highlight physiological processes where the gut serves as a key organ in coupling systemic signals or environmental cues with organism growth, metabolism, immune activity, aging, or behavior. Robust strategies involving intraorgan and interorgan signaling pathways have evolved to preserve gut size in homeostatic conditions and restrict growth during damage-induced regenerative phases. Here we review some of the mechanisms that maintain gut size homeostasis and point out known examples of homeostasis-breaking events that promote gut plasticity to accommodate changes in the external or internal environment. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.


Assuntos
Drosophila melanogaster/genética , Aptidão Genética/genética , Homeostase , Regeneração/genética , Células-Tronco Adultas/citologia , Animais , Autorrenovação Celular/genética , Transdução de Sinais/genética
7.
Dev Cell ; 49(5): 811-818.e4, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31006647

RESUMO

How organs scale with other body parts is not mechanistically understood. We have addressed this question using the Drosophila imaginal disc model. When the growth of one disc domain is perturbed, other parts of the disc and other discs slow down their growth, maintaining proper inter-disc and intra-disc proportions. We show here that the relaxin-like Dilp8 is required for this inter-organ coordination. Our work also reveals that the stress-response transcription factor Xrp1 plays a key role upstream of dilp8 in linking organ growth status with the systemic growth response. In addition, we show that the small ribosomal subunit protein RpS12 is required to trigger Xrp1-dependent non-autonomous response. Our work demonstrates that RpS12, Xrp1, and Dilp8 form an independent regulatory module that ensures intra- and inter-organ growth coordination during development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas Serina-Treonina Quinases/genética , Proteínas Ribossômicas/genética , Transdução de Sinais
8.
Dev Cell ; 45(5): 595-605.e4, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29870719

RESUMO

Drosophila tumor suppressor genes have revealed molecular pathways that control tissue growth, but mechanisms that regulate mitogenic signaling are far from understood. Here we report that the Drosophila TSG tumorous imaginal discs (tid), whose phenotypes were previously attributed to mutations in a DnaJ-like chaperone, are in fact driven by the loss of the N-linked glycosylation pathway component ALG3. tid/alg3 imaginal discs display tissue growth and architecture defects that share characteristics of both neoplastic and hyperplastic mutants. Tumorous growth is driven by inhibited Hippo signaling, induced by excess Jun N-terminal kinase (JNK) activity. We show that ectopic JNK activation is caused by aberrant glycosylation of a single protein, the fly tumor necrosis factor (TNF) receptor homolog, which results in increased binding to the continually circulating TNF. Our results suggest that N-linked glycosylation sets the threshold of TNF receptor signaling by modifying ligand-receptor interactions and that cells may alter this modification to respond appropriately to physiological cues.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genes Supressores de Tumor , Discos Imaginais/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Glicosilação , Discos Imaginais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais
9.
Med Sci (Paris) ; 33(6-7): 637-641, 2017.
Artigo em Francês | MEDLINE | ID: mdl-28990566

RESUMO

Body size is an intrinsic property of living organisms that is intimately linked to the developmental program to produce fit individuals with proper proportions. Final size is the result of both genetic determinants and sophisticated mechanisms adapting size to available resources. Even though organs grow according to autonomous programs, some coordination mechanisms ensure that the different body parts adjust their growth with the rest of the body. In Drosophila, Dilp8, a hormone of the Insulin/Relaxin family is a key player in this inter-organs coordination and is required together with its receptor Lgr3 to limit developmental variability. Recently, the transcriptional co-activator Yki (homologue of YAP/TAZ factors in mammals) was shown to regulate dilp8 expression and contribute to the coordination of organ growth in Drosophila.


Assuntos
Crescimento e Desenvolvimento , Insulinas/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/farmacologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Crescimento e Desenvolvimento/efeitos dos fármacos , Crescimento e Desenvolvimento/genética , Humanos , Insulinas/genética , Insulinas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transdução de Sinais/efeitos dos fármacos
10.
Nat Commun ; 7: 13505, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874005

RESUMO

Coordination of organ growth during development is required to generate fit individuals with fixed proportions. We recently identified Drosophila Dilp8 as a key hormone in coupling organ growth with animal maturation. In addition, dilp8 mutant flies exhibit elevated fluctuating asymmetry (FA) demonstrating a function for Dilp8 in ensuring developmental stability. The signals regulating Dilp8 activity during normal development are not yet known. Here, we show that the transcriptional co-activators of the Hippo (Hpo) pathway, Yorkie (Yki, YAP/TAZ) and its DNA-binding partner Scalloped (Sd), directly regulate dilp8 expression through a Hpo-responsive element (HRE) in the dilp8 promoter. We further demonstrate that mutation of the HRE by genome-editing results in animals with increased FA, thereby mimicking full dilp8 loss of function. Therefore, our results indicate that growth coordination of organs is connected to their growth status through a feedback loop involving Hpo and Dilp8 signalling pathways.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Deleção de Genes , Edição de Genes , Genótipo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
11.
Curr Biol ; 25(20): 2723-9, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26441350

RESUMO

Early transplantation and grafting experiments suggest that body organs follow autonomous growth programs [1-3], therefore pointing to a need for coordination mechanisms to produce fit individuals with proper proportions. We recently identified Drosophila insulin-like peptide 8 (Dilp8) as a relaxin and insulin-like molecule secreted from growing tissues that plays a central role in coordinating growth between organs and coupling organ growth with animal maturation [4, 5]. Deciphering the function of Dilp8 in growth coordination relies on the identification of the receptor and tissues relaying Dilp8 signaling. We show here that the orphan receptor leucine-rich repeat-containing G protein-coupled receptor 3 (Lgr3), a member of the highly conserved family of relaxin family peptide receptors (RXFPs), mediates the checkpoint function of Dilp8 for entry into maturation. We functionally identify two Lgr3-positive neurons in each brain lobe that are required to induce a developmental delay upon overexpression of Dilp8. These neurons are located in the pars intercerebralis, an important neuroendocrine area in the brain, and make physical contacts with the PTTH neurons that ultimately control the production and release of the molting steroid ecdysone. Reducing Lgr3 levels in these neurons results in adult flies exhibiting increased fluctuating bilateral asymmetry, therefore recapitulating the phenotype of dilp8 mutants. Our work reveals a novel Dilp8/Lgr3 neuronal circuitry involved in a feedback mechanism that ensures coordination between organ growth and developmental transitions and prevents developmental variability.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Receptores Acoplados a Proteínas G/genética , Animais , Encéfalo/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Neurônios/metabolismo , Tamanho do Órgão , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
12.
Nature ; 522(7557): 482-6, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25874673

RESUMO

Disruption of epithelial polarity is a key event in the acquisition of neoplastic growth. JNK signalling is known to play an important part in driving the malignant progression of many epithelial tumours, although the link between loss of polarity and JNK signalling remains elusive. In a Drosophila genome-wide genetic screen designed to identify molecules implicated in neoplastic growth, we identified grindelwald (grnd), a gene encoding a transmembrane protein with homology to members of the tumour necrosis factor receptor (TNFR) superfamily. Here we show that Grnd mediates the pro-apoptotic functions of Eiger (Egr), the unique Drosophila TNF, and that overexpression of an active form of Grnd lacking the extracellular domain is sufficient to activate JNK signalling in vivo. Grnd also promotes the invasiveness of Ras(V12)/scrib(-/-) tumours through Egr-dependent Matrix metalloprotease-1 (Mmp1) expression. Grnd localizes to the subapical membrane domain with the cell polarity determinant Crumbs (Crb) and couples Crb-induced loss of polarity with JNK activation and neoplastic growth through physical interaction with Veli (also known as Lin-7). Therefore, Grnd represents the first example of a TNFR that integrates signals from both Egr and apical polarity determinants to induce JNK-dependent cell death or tumour growth.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptores do Fator de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/genética , Moléculas de Adesão Celular/metabolismo , Divisão Celular/genética , Polaridade Celular/genética , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Dados de Sequência Molecular , Invasividade Neoplásica/genética , Neoplasias/enzimologia , Neoplasias/genética , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Proteínas ras/genética , Proteínas ras/metabolismo
15.
Science ; 336(6081): 582-5, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22556251

RESUMO

Little is known about how organ growth is monitored and coordinated with the developmental timing in complex organisms. In insects, impairment of larval tissue growth delays growth and morphogenesis, revealing a coupling mechanism. We carried out a genetic screen in Drosophila to identify molecules expressed by growing tissues participating in this coupling and identified dilp8 as a gene whose silencing rescues the developmental delay induced by abnormally growing tissues. dilp8 is highly induced in conditions where growth impairment produces a developmental delay. dilp8 encodes a peptide for which expression and secretion are sufficient to delay metamorphosis without affecting tissue integrity. We propose that Dilp8 peptide is a secreted signal that coordinates the growth status of tissues with developmental timing.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Discos Imaginais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metamorfose Biológica , Animais , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ecdisona/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Sistema de Sinalização das MAP Quinases , Interferência de RNA , Deleção de Sequência , Fatores de Tempo , Asas de Animais/crescimento & desenvolvimento
16.
Mol Cell Biol ; 30(19): 4744-55, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20679484

RESUMO

Drosophila MCRS2 (dMCRS2; MCRS2/MSP58 and its splice variant MCRS1/p78 in humans) belongs to a family of forkhead-associated (FHA) domain proteins. Whereas human MCRS2 proteins have been associated with a variety of cellular processes, including RNA polymerase I transcription and cell cycle progression, dMCRS2 has been largely uncharacterized. Recent data show that MCRS2 is purified as part of a complex containing the histone acetyltransferase MOF (males absent on first) in both humans and flies. MOF mediates H4K16 acetylation and regulates the expression of a large number of genes, suggesting that MCRS2 could also have a function in transcription regulation. Here, we show that dMCRS2 copurifies with RNA polymerase II (RNAP II) complexes and localizes to the 5' ends of genes. Moreover, dMCRS2 is required for optimal recruitment of RNAP II to the promoter regions of cyclin genes. In agreement with this, dMCRS2 is required for normal levels of cyclin gene expression. We propose a model whereby dMCRS2 promotes gene transcription by facilitating the recruitment of RNAP II preinitiation complexes (PICs) to the promoter regions of target genes.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Western Blotting , Proliferação de Células , Células Cultivadas , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Mutação , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA
17.
Curr Biol ; 19(23): 1969-78, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19931458

RESUMO

BACKGROUND: Adherens junctions (AJs) provide structure to epithelial tissues by connecting adjacent cells through homophilic E-cadherin interactions and are linked to the actin cytoskeleton via the intermediate binding proteins beta-catenin and alpha-catenin. Rather than being static structures, AJs are extensively remodeled during development, allowing the cell rearrangements required for morphogenesis. Several "noncore" AJ components have been identified, which modulate AJs to promote this plasticity but are not absolutely required for cell-cell adhesion. RESULTS: We previously identified dASPP as a positive regulator of dCsk (Drosophila C-terminal Src kinase). Here we show that dRASSF8, the Drosophila RASSF8 homolog, binds to dASPP and that this interaction is required for normal dASPP levels. Our genetic and biochemical data suggest that dRASSF8 acts in concert with dASPP to promote dCsk activity. Both proteins specifically localize to AJs and are mutually required for each other's localization. Furthermore, we observed abnormal E-cadherin localization in mutant pupal retinas, correlating with aberrant cellular arrangements. Loss of dCsk or overexpression of Src elicited similar AJ defects. CONCLUSIONS: Because Src is known to regulate AJs in both Drosophila and mammals, we propose that dASPP and dRASSF8 fine tune cell-cell adhesion during development by directing dCsk and Src activity. We show that the dASPP-dRASSF8 interaction is conserved in humans, suggesting that mammalian ASPP1/2 and RASSF8, which are candidate tumor-suppressor genes, restrict the activity of the Src proto-oncogene.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Transporte/genética , Adesão Celular/fisiologia , Linhagem Celular , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ligação Proteica , Proto-Oncogene Mas , Retina/embriologia , Proteínas Supressoras de Tumor/genética , Asas de Animais
18.
Dev Cell ; 13(6): 773-82, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18061561

RESUMO

Src-family kinases (SFKs) control a variety of biological processes, from cell proliferation and differentiation to cytoskeletal rearrangements. Abnormal activation of SFKs has been implicated in a wide variety of cancers and is associated with metastatic behavior (Yeatman, 2004). SFKs are maintained in an inactive state by inhibitory phosphorylation of their C-terminal region by C-terminal Src kinase (Csk). We have identified Drosophila Ankyrin-repeat, SH3-domain, and Proline-rich-region containing Protein (dASPP) as a regulator of Drosophila Csk (dCsk) activity. dASPP is the homolog of the mammalian ASPP proteins, which are known to bind to and stimulate the proapoptotic function of p53. We show that dASPP is a positive regulator of dCsk. First, dASPP loss-of-function strongly enhances the specific phenotypes of dCsk mutants in wing epithelial cells. Second, dASPP interacts physically with dCsk to potentiate the inhibitory phosphorylation of Drosophila Src (dSrc). Our results suggest a role for dASPP in maintaining epithelial integrity through dCsk regulation.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas Tirosina Quinases/metabolismo , Animais , Animais Geneticamente Modificados , Anquirinas/química , Western Blotting , Proteína Tirosina Quinase CSK , Drosophila melanogaster , Células Epiteliais/metabolismo , Imunoprecipitação , Fenótipo , Fosforilação , Prolina/química , Transdução de Sinais , Domínios de Homologia de src , Quinases da Família src
19.
Curr Biol ; 16(14): 1453-8, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16860746

RESUMO

Developmental and environmental signals control a precise program of growth, proliferation, and cell death. This program ensures that animals reach, but do not exceed, their typical size . Understanding how cells sense the limits of tissue size and respond accordingly by exiting the cell cycle or undergoing apoptosis has important implications for both developmental and cancer biology. The Hippo (Hpo) pathway comprises the kinases Hpo and Warts/Lats (Wts), the adaptors Salvador (Sav) and Mob1 as a tumor suppressor (Mats), the cytoskeletal proteins Expanded and Merlin, and the transcriptional cofactor Yorkie (Yki) . This pathway has been shown to restrict cell division and promote apoptosis. The caspase repressor DIAP1 appears to be a primary target of the Hpo pathway in cell-death control. Firstly, Hpo promotes DIAP1 phosphorylation, likely decreasing its stability. Secondly, Wts phosphorylates and inactivates Yki, decreasing DIAP1 transcription. Although we understand some of the events downstream of the Hpo kinase, its mode of activation remains mysterious. Here, we show that Hpo can be activated by Ionizing Radiations (IR) in a Dmp53 (Drosophila melanogaster p53)-dependent manner and that Hpo is required (though not absolutely) for the cell death response elicited by IR or Dmp53 ectopic expression.


Assuntos
Apoptose/fisiologia , Dano ao DNA , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/fisiologia , Animais , Apoptose/efeitos da radiação , Caspases/análise , Caspases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Raios gama , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/análise , Peptídeos e Proteínas de Sinalização Intracelular , Larva/citologia , Larva/metabolismo , Larva/efeitos da radiação , Mutação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
J Cell Biol ; 173(6): 963-74, 2006 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-16785324

RESUMO

Target of rapamycin (TOR) is a central regulator of cellular and organismal growth in response to nutrient conditions. In a genetic screen for novel TOR interactors in Drosophila melanogaster, we have identified the clathrin-uncoating ATPase Hsc70-4, which is a key regulator of endocytosis. We present genetic evidence that TOR signaling stimulates bulk endocytic uptake and inhibits the targeted endocytic degradation of the amino acid importer Slimfast. Thus, TOR simultaneously down-regulates aspects of endocytosis that inhibit growth and up-regulates potential growth-promoting functions of endocytosis. In addition, we find that disruption of endocytosis leads to changes in TOR and phosphatidylinositol-3 kinase activity, affecting cell growth, autophagy, and rapamycin sensitivity. Our data indicate that endocytosis acts both as an effector function downstream of TOR and as a physiologically relevant regulator of TOR signaling.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Endocitose/fisiologia , Corpo Adiposo/citologia , Fosfatidilinositol 3-Quinases/fisiologia , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Crescimento Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Modelos Biológicos , Fenótipo , Proteínas Quinases , Transdução de Sinais , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA