Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 1755, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063913

RESUMO

Developing new cropping strategies (very early sowing, crop expansion at higher latitudes, double cropping) to improve soybean production in Europe under climate change needs a good prediction of phenology under different temperature and photoperiod conditions. For that purpose, a simple phenology algorithm (SPA) was developed and parameterized for 10 contrasting soybean cultivars (maturity group 000 to II). Two experiments were carried out at INRA Toulouse (France) for parameterization: 1) Phenological monitoring of plants in pots on an outdoor platform with 6 planting dates. 2) Response of seed germination to temperature in controlled conditions. Multi-location field trials including 5 sites, 4 years, 2 sowing dates, and 10 cultivars were used to evaluate the SPA phenology predictions. Mean cardinal temperatures (minimum, optimum, and maximum) for germination were ca. 2, 30, and 40°C, respectively with significant differences among cultivars. The photoperiod sensitivity coefficient varied among cultivars when fixing Popt and Pcrt, optimal and critical photoperiods respectively, by maturity group. The parameterized algorithm showed an RMSE of less than 6 days for the prediction of crop cycle duration (i.e. cotyledons stage to physiological maturity) in the field trials including 75 data points. Flowering (R1 stage), and beginning of grain filling (R5 stage) dates were satisfactorily predicted with RMSEs of 8.2 and 9.4 days respectively. Because SPA can be also parameterized using data from field experiments, it can be useful as a plant selection tool across environments. The algorithm can be readily applied to species other than soybean, and its incorporation into cropping systems models would enhance the assessment of the performance of crop cultivars under climate change scenarios.

2.
Front Plant Sci ; 9: 1908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30700989

RESUMO

Heliaphen is an outdoor platform designed for high-throughput phenotyping. It allows the automated management of drought scenarios and monitoring of plants throughout their lifecycles. A robot moving between plants growing in 15-L pots monitors the plant water status and phenotypes the leaf or whole-plant morphology. From these measurements, we can compute more complex traits, such as leaf expansion (LE) or transpiration rate (TR) in response to water deficit. Here, we illustrate the capabilities of the platform with two practical cases in sunflower (Helianthus annuus): a genetic and genomic study of the response of yield-related traits to drought, and a modeling study using measured parameters as inputs for a crop simulation. For the genetic study, classical measurements of thousand-kernel weight (TKW) were performed on a biparental population under automatically managed drought stress and control conditions. These data were used for an association study, which identified five genetic markers of the TKW drought response. A complementary transcriptomic analysis identified candidate genes associated with these markers that were differentially expressed in the parental backgrounds in drought conditions. For the simulation study, we used a crop simulation model to predict the impact on crop yield of two traits measured on the platform (LE and TR) for a large number of environments. We conducted simulations in 42 contrasting locations across Europe using 21 years of climate data. We defined the pattern of abiotic stresses occurring at the continental scale and identified ideotypes (i.e., genotypes with specific trait values) that are more adapted to specific environment types. This study exemplifies how phenotyping platforms can assist the identification of the genetic architecture controlling complex response traits and facilitate the estimation of ecophysiological model parameters to define ideotypes adapted to different environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA