Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Res Sq ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562878

RESUMO

The germinal center (GC) dark zone (DZ) and light zone (LZ) regions spatially separate expansion and diversification from selection of antigen-specific B-cells to ensure antibody affinity maturation and B cell memory. The DZ and LZ differ significantly in their immune composition despite the lack of a physical barrier, yet the determinants of this polarization are poorly understood. This study provides novel insights into signals controlling asymmetric T-cell distribution between DZ and LZ regions. We identify spatially-resolved DNA damage response and chromatin compaction molecular features that underlie DZ T-cell exclusion. The DZ spatial transcriptional signature linked to T-cell immune evasion clustered aggressive Diffuse Large B-cell Lymphomas (DLBCL) for differential T cell infiltration. We reveal the dependence of the DZ transcriptional core signature on the ATR kinase and dissect its role in restraining inflammatory responses contributing to establishing an immune-repulsive imprint in DLBCL. These insights may guide ATR-focused treatment strategies bolstering immunotherapy in tumors marked by DZ transcriptional and chromatin-associated features.

2.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37880182

RESUMO

BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) is a key intracellular enzyme that participates in nicotinamide adenine dinucleotide (NAD) homeostasis as well as a released cytokine (eNAMPT) that is elevated in inflammatory conditions and in cancer. In patients with breast cancer, circulating eNAMPT is elevated and its plasma levels correlate with prognosis and staging. In light of this, we investigated the contribution of eNAMPT in triple negative mammary carcinoma progression by investigating the effect of its neutralization via a specific neutralizing monoclonal antibody (C269). METHODS: We used female BALB/c mice injected with 4T1 clone 5 cells and female C57BL6 injected with EO771 cells, evaluating tumoral size, spleen weight and number of metastases. We injected two times a week the anti-eNAMPT neutralizing antibody and we sacrificed the mice after 28 days. Harvested tumors were analyzed by histopathology, flow cytometry, western blot, immunohistochemistry, immunofluorescence and RNA sequencing to define tumor characteristics (isolating tumor infiltrating lymphocytes and tumoral cells) and to investigate the molecular mechanisms behind the observed phenotype. Moreover, we dissected the functional relationship between T cells and tumoral cells using three-dimensional (3D) co-cultures. RESULTS: The neutralization of eNAMPT with C269 led to decreased tumor size and reduced number of lung metastases. RNA sequencing and functional assays showed that eNAMPT controlled T-cell response via the programmed death-ligand 1/programmed cell death protein 1 (PD-L1/PD-1) axis and its neutralization led to a restoration of antitumoral immune responses. In particular, eNAMPT neutralization was able to activate CD8+IFNγ+GrzB+ T cells, reducing the immunosuppressive phenotype of T regulatory cells. CONCLUSIONS: These studies indicate for the first time eNAMPT as a novel immunotherapeutic target for triple negative breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Camundongos , Animais , Nicotinamida Fosforribosiltransferase/metabolismo , Evasão da Resposta Imune , Citocinas/metabolismo , Prognóstico
4.
Expert Rev Anticancer Ther ; 23(2): 135-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36803369

RESUMO

INTRODUCTION: Oncological treatments are changing rapidly due to the advent of several targeted anticancer drugs and regimens. The primary new area of research in oncological medicine is the implementation of a combination of novel therapies and standard care. In this scenario, radioimmunotherapy is one of the most promising fields, as proven by the exponential growth of publications in this context during the last decade. AREAS COVERED: This review provides an overview of the synergistic use of radiotherapy and immunotherapy and addresses questions like the importance of this subject, aspects clinicians look for in patients to administer this combined therapy, individuals who would benefit the most from this treatment, how to achieve abscopal effect and when does radio-immunotherapy become standard clinical practice. EXPERT OPINION: Answers to these queries generate further issues that need to be addressed and solved. The abscopal and bystander effects are not utopia, rather physiological phenomena that occur in our bodies. Nevertheless, substantial evidence regarding the combination of radioimmunotherapy is lacking. In conclusion, joining forces and finding answers to all these open questions is of paramount importance.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/radioterapia , Imunoterapia , Radioimunoterapia , Terapia Combinada
5.
Front Immunol ; 13: 987639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203609

RESUMO

PD-L1 in tumor cells is the only used biomarker for anti PD1/PD-L1 immune-checkpoints inhibitors (ICI) in Non Small Cell Lung Cancer (NSCLC) patients. However, this parameter is inaccurate to predict response, especially in patients with low tumor PD-L1. Here, we evaluated circulating EVs as possible biomarkers for ICI in advanced NSCLC patients with low tumoral PD-L1. EVs were isolated from plasma of 64 PD-L1 low, ICI-treated NSCLC patients, classified either as responders (R; complete or partial response by RECIST 1.1) or non-responders (NR). EVs were characterized following MISEV guidelines and by flow cytometry. T cells from healthy donors were triggered in vitro using patients' EVs. Unsupervised statistical approach was applied to correlate EVs' and patients' features to clinical response. R-EVs showed higher levels of tetraspanins (CD9, CD81, CD63) than NR-EVs, significantly associated to better overall response rate (ORR). In multivariable analysis CD81-EVs correlated with ORR. Unsupervised analysis revealed a cluster of variables on EVs, including tetraspanins, significantly associated with ORR and improved survival. R-EVs expressed more costimulatory molecules than NR-EVs although both increased T cell proliferation and partially, activation. Tetraspanins levels on EVs could represent promising biomarkers for ICI response in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Antígeno B7-H1 , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/patologia , Vesículas Extracelulares/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/patologia , Tetraspanina 28 , Tetraspaninas
6.
Clin Lung Cancer ; 23(7): e489-e499, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948460

RESUMO

INTRODUCTION: Lipid metabolism impacts immune cell differentiation, activation, and functions, modulating inflammatory mediators, energy homeostasis, and cell membrane composition. Despite preclinical evidence, data in humans lack concerning tumors and immunotherapy (IO). We aimed at investigating the correlations between circulating lipids and the outcome of non-small cell lung cancer (NSCLC) patients treated with IO. MATERIALS AND METHODS: We identified all patients with advanced NSCLC treated with IO at our Institution with available baseline plasma samples. Fatty acids (FAs) were analyzed through gas chromatography. Survival curves were estimated by the Kaplan-Meier method. Cox multivariate models were constructed through a stepwise procedure, with entry and exit P value set at .2. RESULTS: We identified 112 patients, mostly with performance status 1 (65.2%) and PD-L1≥1% (75.3%). Median progression-free survival (PFS) and overall survival (OS) were 2.8 and 11.0 months, respectively. Multivariable model for survival identified a positive association of circulating free (FFA) C16:0 (P .005) and esterified (EFA) C16:1 (P .030) with PFS, and a positive association of EFA C16:1 (P .001) and EFA C18:0 (P .020) with OS. EFA C16:0 was negatively associated with PFS (P .008). CONCLUSION: FFA C16:0 and FAs derived from its unsaturation (EFA C16:1) and elongation (EFA C18:0) are associated with a better outcome in NSCLC patients treated with IO. It is conceivable that the ratio among those FAs may modify membrane fluidity and receptor activity, influencing IO efficacy. These data pave the way for the investigation of lipid-modulating strategies in association with IO in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antígeno B7-H1 , Neoplasias Pulmonares/tratamento farmacológico , Ácidos Graxos/uso terapêutico , Imunoterapia/métodos , Biomarcadores , Mediadores da Inflamação/uso terapêutico
7.
Clin Cancer Res ; 28(14): 3141-3155, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35349670

RESUMO

PURPOSE: The stromal and immune bone marrow (BM) landscape is emerging as a crucial determinant for acute myeloid leukemia (AML). Regulatory T cells (Treg) are enriched in the AML microenvironment, but the underlying mechanisms are poorly elucidated. Here, we addressed the effect of IFNγ released by AML cells in BM Treg induction and its impact on AML prognosis. EXPERIMENTAL DESIGN: BM aspirates from patients with AML were subdivided according to IFNG expression. Gene expression profiles in INFγhigh and IFNγlow samples were compared by microarray and NanoString analysis and used to compute a prognostic index. The IFNγ release effect on the BM microenvironment was investigated in mesenchymal stromal cell (MSC)/AML cell cocultures. In mice, AML cells silenced for ifng expression were injected intrabone. RESULTS: IFNγhigh AML samples showed an upregulation of inflammatory genes, usually correlated with a good prognosis in cancer. In contrast, in patients with AML, high IFNG expression was associated with poor overall survival. Notably, IFNγ release by AML cells positively correlated with a higher BM suppressive Treg frequency. In coculture experiments, IFNγhigh AML cells modified MSC transcriptome by upregulating IFNγ-dependent genes related to Treg induction, including indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 inhibitor abrogated the effect of IFNγ release by AML cells on MSC-derived Treg induction. In vivo, the genetic ablation of IFNγ production by AML cells reduced MSC IDO1 expression and Treg infiltration, hindering AML engraftment. CONCLUSIONS: IFNγ release by AML cells induces an immune-regulatory program in MSCs and remodels BM immunologic landscape toward Treg induction, contributing to an immunotolerant microenvironment. See related commentary by Ferrell and Kordasti, p. 2986.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Animais , Medula Óssea/metabolismo , Células da Medula Óssea , Interferon gama/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral
9.
Cancer Res ; 82(8): 1439-1447, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35045983

RESUMO

Tumor outcome is determined not only by cancer cell-intrinsic features but also by the interaction between cancer cells and their microenvironment. There is great interest in tumor-infiltrating immune cells, yet mast cells have been less studied. Recent work has highlighted the impact of mast cells on the features and aggressiveness of cancer cells, but the eventual effect of mast cell infiltration is still controversial. Here, we review multifaceted findings regarding the role of mast cells in cancer, with a particular focus on breast cancer, which is further complicated because of its classification into subtypes characterized by different biological features, outcome, and therapeutic strategies.


Assuntos
Neoplasias da Mama , Mastócitos , Neoplasias da Mama/patologia , Feminino , Humanos , Mastócitos/patologia , Microambiente Tumoral
11.
Cancer Discov ; 12(1): 90-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789537

RESUMO

In tumor-bearing mice, cyclic fasting or fasting-mimicking diets (FMD) enhance the activity of antineoplastic treatments by modulating systemic metabolism and boosting antitumor immunity. Here we conducted a clinical trial to investigate the safety and biological effects of cyclic, five-day FMD in combination with standard antitumor therapies. In 101 patients, the FMD was safe, feasible, and resulted in a consistent decrease of blood glucose and growth factor concentration, thus recapitulating metabolic changes that mediate fasting/FMD anticancer effects in preclinical experiments. Integrated transcriptomic and deep-phenotyping analyses revealed that FMD profoundly reshapes anticancer immunity by inducing the contraction of peripheral blood immunosuppressive myeloid and regulatory T-cell compartments, paralleled by enhanced intratumor Th1/cytotoxic responses and an enrichment of IFNγ and other immune signatures associated with better clinical outcomes in patients with cancer. Our findings lay the foundations for phase II/III clinical trials aimed at investigating FMD antitumor efficacy in combination with standard antineoplastic treatments. SIGNIFICANCE: Cyclic FMD is well tolerated and causes remarkable systemic metabolic changes in patients with different tumor types and treated with concomitant antitumor therapies. In addition, the FMD reshapes systemic and intratumor immunity, finally activating several antitumor immune programs. Phase II/III clinical trials are needed to investigate FMD antitumor activity/efficacy.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Jejum , Antineoplásicos/administração & dosagem , Neoplasias da Mama/dietoterapia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias Colorretais/dietoterapia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
12.
J Exp Clin Cancer Res ; 40(1): 376, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852841

RESUMO

Nonsense-mediated mRNA decay (NMD) is a highly conserved cellular surveillance mechanism, commonly studied for its role in mRNA quality control because of its capacity of degrading mutated mRNAs that would produce truncated proteins. However, recent studies have proven that NMD hides more complex tasks involved in a plethora of cellular activities. Indeed, it can control the stability of mutated as well as non-mutated transcripts, tuning transcriptome regulation. NMD not only displays a pivotal role in cell physiology but also in a number of genetic diseases. In cancer, the activity of this pathway is extremely complex and it is endowed with both pro-tumor and tumor suppressor functions, likely depending on the genetic context and tumor microenvironment. NMD inhibition has been tested in pre-clinical studies showing favored production of neoantigens by cancer cells, which can stimulate the triggering of an anti-tumor immune response. At the same time, NMD inhibition could result in a pro-tumor effect, increasing cancer cell adaptation to stress. Since several NMD inhibitors are already available in the clinic to treat genetic diseases, these compounds could be redirected to treat cancer patients, pending the comprehension of these variegated NMD regulation mechanisms. Ideally, an effective strategy should exploit the anti-tumor advantages of NMD inhibition and simultaneously preserve its intrinsic tumor suppressor functions. The targeting of NMD could provide a new therapeutic opportunity, increasing the immunogenicity of tumors and potentially boosting the efficacy of the immunotherapy agents now available for cancer treatment.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Mutação , Neoplasias/terapia
13.
Clin Cancer Res ; 27(23): 6307-6313, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34548320

RESUMO

PURPOSE: Little is known about the efficacy of HER2-targeted therapy in patients with breast cancer showing different HER2-pathway dependence and immune phenotypes. Herein, we report a NeoALTTO exploratory analysis evaluating the clinical value of 22 types of tumor-infiltrating immune cells by CIBERSORT and 5 immune-related metagenes in the overall patient population, and in subgroups defined by the TRAR classifier as HER2-addicted (TRAR-low) or not (TRAR-high). PATIENTS AND METHODS: Association of baseline TRAR, immune-related metagenes, and CIBERSORT data with pathologic complete response (pCR) and event-free survival (EFS) were assessed using logistic and Cox regression models. Corrections for multiple testing were performed by the Bonferroni method. RESULTS: A total of 226 patients were analyzed: 80 (35%) achieved a pCR, and 64 (28%) experienced a relapse with a median follow-up of 6.7 (interquartile range 6.1-6.8) years; 108 cases were classified as TRAR-low, and 118 TRAR-high. Overall, γδ T-cell fraction [OR = 2.69; 95% confidence interval (CI), 1.40-5.18], and no immune-related metagenes were predictive of pCR. Notably, lymphocyte-specific kinase (LCK) predicted pCR to combination (OR = 2.53; 95% CI, 1.12-5.69), but not to single-agent trastuzumab or lapatinib [OR = 0.74; 95% CI, 0.45-1.22 (P interaction = 0.01)]. Integrating LCK with γδ T cells in a multivariate model added to the discriminatory capability of clinical and molecular variables with a shift in AUC from 0.80 (95% CI, 0.74-0.86) to 0.83 (95% CI, 0.78-0.89). In TRAR-low cases, activated mast cells, IFN and MHCII were reduced, and STAT1, HCK1, and γδ T cells were associated with pCR. STAT1 was broadly associated with improved EFS regardless of pCR, and nodal status in overall (HR = 0.68; 95% CI, 0.49-0.94) and in TRAR-low cases (HR = 0.50; 95% CI, 0.30-0.86). CONCLUSIONS: Immuno-phenotyping holds the promise to complement current predictive models in HER2-positive breast cancer and to assist in new therapeutic development.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Fenótipo , Receptor ErbB-2/genética , Receptor ErbB-2/uso terapêutico , Trastuzumab/uso terapêutico , Resultado do Tratamento
14.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439180

RESUMO

In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. miRNAs were analyzed by OpenArray in a retrospective cohort of plasma samples including 100 patients with malignant (T), 89 benign disease (B), and 99 healthy donors (HD) divided into training and testing sets and a prospective cohort (BABE) of 289 women with suspicious imaging findings who underwent tissue biopsy. miRNAs associated with disease status were identified by univariate analysis and then combined into signatures by multivariate logistic regression models. By combining 16 miRNAs differentially expressed in the T vs. HD comparison, 26 signatures were also able to significantly discriminate T from B disease. Seven of them, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were statistically validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 were confirmed in the prospective BABE Cohort. This study identified 5 circulating miRNAs that, properly combined, distinguish malignant from benign breast disease in women with a high likelihood of malignancy.

15.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439233

RESUMO

BACKGROUND: A combination of TLR9 agonists and an anti-PD-1 antibody has been reported to be effective in immunocompetent mice but the role of innate immunity has not yet been completely elucidated. Therefore, we investigated the contribution of the innate immune system to this combinatorial immunotherapeutic regimens using an immunodeficient mouse model in which the effector functions of innate immunity can clearly emerge without any interference from T lymphocytes. METHODS: Athymic mice xenografted with IGROV-1 human ovarian cells, reported to be sensitive to TLR9 agonist therapy, were treated with cytosine-guanine (CpG)-oligodeoxynucleotides (ODNs), an anti-PD-1 antibody or their combination. RESULTS: We found that PD-1 blockade dampened CpG-ODN antitumor activity. In vitro studies indicated that the interaction between the anti-PD-1 antibody fragment crystallizable (Fc) domain and macrophage Fc receptors caused these immune cells to acquire an immunoregulatory phenotype, contributing to a decrease in the efficacy of CpG-ODNs. Accordingly, in vivo macrophage depletion abrogated the detrimental effect exerted by the anti-PD-1 antibody. CONCLUSION: Our data suggest that if TLR signaling is active in macrophages, coadministration of an anti-PD-1 antibody can reprogram these immune cells towards a polarization state able to negatively affect the immune response and eventually promote tumor growth.

16.
Cancer Immunol Immunother ; 70(9): 2429-2438, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33797567

RESUMO

Lung is a specialized tissue where metastases from primary lung tumors takeoff and those originating from extra-pulmonary sites land. One commonality characterizing these processes is the supportive role exerted by myeloid cells, particularly neutrophils, whose recruitment is facilitated in this tissue microenvironment. Indeed, neutrophils have important part in the pathophysiology of this organ and the key mechanisms regulating neutrophil expansion and recruitment during infection can be co-opted by tumor cells to promote growth and metastasis. Although neutrophils dominate the myeloid landscape of lung cancer other populations including macrophages, dendritic cells, mast cells, basophils and eosinophils contribute to the complexity of lung cancer TME. In this review, we discuss the origin and significance of myeloid cells heterogeneity in lung cancer, which translates not only in a different frequency of immune populations but it encompasses state of activation, morphology, localization and mutual interactions. The relevance of such heterogeneity is considered in the context of tumor growth and response to immunotherapy.


Assuntos
Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Animais , Biomarcadores , Biomarcadores Tumorais , Gerenciamento Clínico , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Imuno-Histoquímica , Imunoterapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Terapia de Alvo Molecular/métodos
17.
Sci Rep ; 11(1): 651, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436685

RESUMO

We xeno-transplanted human neural precursor cells derived from induced pluripotent stem cells into the cerebellum and brainstem of mice and rats during prenatal development or the first postnatal week. The transplants survived and started to differentiate up to 1 month after birth when they were rejected by both species. Extended survival and differentiation of the same cells were obtained only when they were transplanted in NOD-SCID mice. Transplants of human neural precursor cells mixed with the same cells after partial in vitro differentiation or with a cellular extract obtained from adult rat cerebellum increased survival of the xeno-graft beyond one month. These findings are consistent with the hypothesis that the slower pace of differentiation of human neural precursors compared to that of rodents restricts induction of immune-tolerance to human antigens expressed before completion of maturation of the immune system. With further maturation the transplanted neural precursors expressed more mature antigens before the graft were rejected. Supplementation of the immature cells suspensions with more mature antigens may help to induce immune-tolerance for those antigens expressed only later by the engrafted cells.


Assuntos
Diferenciação Celular , Cerebelo/imunologia , Sobrevivência de Enxerto , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurônios/transplante , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Cerebelo/crescimento & desenvolvimento , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neurônios/citologia , Ratos , Ratos Wistar , Especificidade da Espécie , Transplante Heterólogo
18.
EBioMedicine ; 61: 103055, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33096480

RESUMO

BACKGROUND: Intra-tumour heterogeneity in lymphoid malignancies encompasses selection of genetic events and epigenetic regulation of transcriptional programs. Clonal-related neoplastic cell populations are unsteadily subjected to immune editing and metabolic adaptations within different tissue microenvironments. How tissue-specific mesenchymal cells impact on the diversification of aggressive lymphoma clones is still unknown. METHODS: Combining in situ quantitative immunophenotypical analyses and RNA sequencing we investigated the intra-tumour heterogeneity and the specific mesenchymal modifications that are associated with A20 diffuse large B-cell lymphoma (DLBCL) cells seeding of different tissue microenvironments. Furthermore, we characterized features of lymphoma-associated stromatogenesis in human DLBCL samples using Digital Spatial Profiling, and established their relationship with prognostically relevant variables, such as MYC. FINDINGS: We found that the tissue microenvironment casts a relevant influence over A20 transcriptional landscape also impacting on Myc and DNA damage response programs. Extending the investigation to mice deficient for the matricellular protein SPARC, a stromal prognostic factor in human DLBCL, we demonstrated a different immune imprint on A20 cells according to stromal Sparc proficiency. Through Digital Spatial Profiling of 87 immune and stromal genes on human nodal DLBCL regions characterized by different mesenchymal composition, we demonstrate intra-lesional heterogeneity arising from diversified mesenchymal contextures and impacting on the stromal and immune milieu. INTERPRETATION: Our study provides experimental evidence that stromal microenvironment generates topological determinants of intra-tumour heterogeneity in DLBCL involving key transcriptional pathways such as Myc expression, damage response programs and immune checkpoints. FUNDING: This study has been supported by the Italian Foundation for Cancer Research (AIRC) (grants 15999 and 22145 to C. Tripodo) and by the University of Palermo.


Assuntos
Biomarcadores Tumorais , Heterogeneidade Genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Células Estromais/metabolismo , Microambiente Tumoral/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Imunofenotipagem , Hibridização In Situ , Camundongos , Modelos Biológicos , Fenótipo , Prognóstico , Análise de Sequência de RNA , Células Estromais/patologia , Transcriptoma
20.
Tumori ; : 300891620923790, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32364028

RESUMO

BACKGROUND: The rapid spread of coronavirus disease (COVID-19) is affecting many countries. While healthcare systems need to cope with the need to treat a large number of people with different degrees of respiratory failure, actions to preserve aliquots of the healthcare system to guarantee treatment to patients are mandatory. METHODS: In order to protect the Fondazione IRCCS-Istituto Nazionale dei Tumori di Milano from the spread of COVID-19, a number of to-hospital and within-hospital filters were applied. Among others, a triage process to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity in patients with cancer was developed consisting of high-resolution low-dose computed tomography (CT) scan followed by reverse transcription polymerase chain reaction (RT-PCR) detection of SARS-CoV-2 in nose-throat swabs whenever CT was suggestive of lung infection. To serve symptomatic patients who were already admitted to the hospital or in need of hospitalization while waiting for RT-PCR laboratory confirmation of infection, a COVID-19 surveillance zone was set up. RESULTS: A total of 301 patients were screened between March 6 and April 3, 2020. Of these, 47 were hospitalized, 53 needed a differential diagnosis to continue with their cancer treatment, and 201 were about to undergo surgery. RT-PCR was positive in 13 of 40 hospitalized patients (32%), 14 of 52 day hospital patients (27%), and 6 of 201 surgical patients (3%). CONCLUSION: Applying filters to protect our comprehensive cancer center from COVID-19 spread contributed to guaranteeing cancer care during the COVID-19 crisis in Milan. A surveillance area and surgical triage allowed us to protect the hospital from as many as 33 patients infected with SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...