Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673801

RESUMO

In recent years, marine natural products have become one of the most important resources of novel lead compounds for critical diseases associated with age. Spirulina, a dietary supplement made from blue-green algae (cyanobacteria: scientific name Arthrospira platensis), is particularly rich in phycocyanin, a phycobiliprotein, which accounts for up to 20% of this cyanobacterium's dry weight and is considered responsible for its anti-cancer, anti-inflammatory and antioxidant activities. Although the anti-aging activity of phycocyanin has been investigated, how exactly this compound works against aging remains elusive. The aim of our research is to use the yeast Saccharomyces cerevisiae as a model organism to investigate the anti-aging properties of phycocyanin from A. platensis. Our results show that phycocyanin has a powerful anti-aging effect, greatly extending the chronological life span of yeast cells in a dose-dependent way, as the effect was also pronounced when cells were grown in SD medium under calorie restriction conditions (0.2% glucose). Both ROS and accumulation of dead cells were followed by staining chronologically aged cells with dihydrorhodamine 123 (DHR123) and propidium iodide (PI). Interestingly, we found that most of the aged phycocyanin-treated cells, which were unable to form colonies, were actually ROS+/PI-. Finally, we show that the moment in which phycocyanin is added to the culture does not substantially influence its effectiveness in counteracting chronological aging.


Assuntos
Ficocianina , Saccharomyces cerevisiae , Spirulina , Ficocianina/farmacologia , Spirulina/química , Saccharomyces cerevisiae/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia
2.
FEBS Lett ; 597(2): 298-308, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36527174

RESUMO

Previously, we showed that an aberrant accumulation of activated Ras in mitochondria correlates with an increase in apoptosis. In this article, we show that lack of trehalose-6P-synthase, known to trigger apoptosis in Saccharomyces cerevisiae, induces localization of active Ras proteins in mitochondria, confirming the above-mentioned correlation. Next, by characterizing the ras1Δ and ras2Δ mutants, we show that active Ras2 proteins, which accumulate in the mitochondria following addition of acetic acid (a pro-apoptotic stimulus), are likely the GTPases involved in regulated cell death, while active Ras1 proteins, constitutively localized in mitochondria, might be involved in a pro-survival molecular machinery. Finally, by characterizing the gpa2Δ and cyr1Δ mutants, in which the cAMP/PKA pathway is compromised, we show that active mitochondrial Ras proteins promote apoptosis through the cAMP/PKA pathway.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Saccharomycetales/metabolismo , AMP Cíclico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Apoptose , Proteínas ras , Mitocôndrias/metabolismo , Proteínas Fúngicas/metabolismo
3.
Cell Signal ; 92: 110262, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35093533

RESUMO

In Saccharomyces cerevisiae, the protein kinase A (PKA) plays a central role in the control of metabolism, stress resistance and cell cycle progression. In a previous work, we used a FRET-based A-kinase activity reporter (AKAR3 probe) to monitor changes in PKA activity in vivo in single S. cerevisiae cells. Since this procedure is quite complex and time-consuming, in this work we used the AKAR3 probe (evenly distributed within the cells) and the plate reader Victor-X3™ (Perkin Elmer®) to measure PKA activity in vivo in a whole cell population. We show that in wild type strains, the FRET increases after addition of glucose to glucose-starved cells, while no changes are observed when this sugar is added to strains with either absent or attenuated PKA activity. Moreover, using the pm-AKAR3 probe, mainly expressed at the plasma membrane and partially at the vacuolar membrane, we could monitor PKA activity from the starting site of the signal to internal regions, where the signal is propagated. Finally, we also show evidence for direct activation of PKA by glucose, independent of cAMP. In conclusion, our data show that AKAR3 and pm-AKAR3 probes are useful biosensors to monitor PKA activity in a S. cerevisiae cell population using a plate reader.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Glucose/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Apoptosis ; 25(9-10): 686-696, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32666259

RESUMO

Caloric restriction mimetics (CRMs) are promising molecules to prevent age-related diseases as they activate pathways driven by a true caloric restriction. Hydroxycitric acid (HCA) is considered a bona fide CRM since it depletes acetyl-CoA pools by acting as a competitive inhibitor of ATP citrate lyase (ACLY), ultimately repressing protein acetylation and promoting autophagy. Importantly, it can reduce inflammation and tumour development. In order to identify phenotypically relevant new HCA targets we have investigated HCA effects in Saccharomyces cerevisiae, where ACLY is lacking. Strikingly, the drug revealed a powerful anti-aging effect, another property proposed to mark bona fide CRMs. Chronological life span (CLS) extension but also resistance to acetic acid of HCA treated cells were associated to repression of cell apoptosis and necrosis. HCA also largely prevented cell deaths caused by a severe oxidative stress. The molecule could act widely by negatively modulating cell metabolism, similarly to citrate. Indeed, it inhibited both growth reactivation and the oxygen consumption rate of yeast cells in stationary phase. Genetic analyses on yeast CLS mutants indicated that part of the HCA effects can be sensed by Sch9 and Ras2, two conserved key regulators of nutritional and stress signal pathways of primary importance. Our data together with published biochemical analyses indicate that HCA may act with multiple mechanisms together with ACLY repression and allowed us to propose an integrated mechanistic model as a basis for future investigations.


Assuntos
ATP Citrato (pro-S)-Liase/genética , Envelhecimento/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Citratos/farmacologia , Envelhecimento/genética , Apoptose/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
5.
Biochem Biophys Res Commun ; 523(1): 130-134, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31837801

RESUMO

In previous papers we showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type yeast cells growing exponentially on glucose, while an aberrant accumulation of activated Ras in mitochondria correlated to mitochondrial dysfunction, accumulation of ROS and regulated cell death. Here we show that also in a strain lacking Snf1, the homolog of the AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae, activated Ras proteins accumulate mainly in these organelles, suggesting an antiapoptotic role for this protein, beside its well-known function in glucose repression. Indeed, in this paper we show that Snf1 protects against apoptosis in Saccharomyces cerevisiae. In particular, following treatment with acetic acid, a well-known inducer of apoptosis in this microorganism, snf1Δ cells show a significant reduction in cell survival and a higher level of ROS when compared with wild-type cells. More importantly, untreated snf1Δ cells show a higher percentage of apoptotic cells compared with wild-type cells, which further increases upon treatment with acetic acid. In order to determine whether the role of Snf1 in regulated cell death is dependent on its catalytic activity, we characterized the Snf1-S214E strain, expressing a catalytically inactive form of Snf1. Data on active Ras proteins localization, cell survival, level of ROS and percentage of apoptotic cells are congruent and suggest that the antiapoptotic role of Snf1 is independent on its kinase activity.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas ras/metabolismo , Ácido Acético/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
6.
Microb Cell ; 5(7): 344-356, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29992130

RESUMO

Aspirin and its main metabolite salicylate are promising molecules in preventing cancer and metabolic diseases. S. cerevisiae cells have been used to study some of their effects: (i) salicylate induces the reversible inhibition of both glucose transport and the biosyntheses of glucose-derived sugar phosphates, (ii) Aspirin/salicylate causes apoptosis associated with superoxide radical accumulation or early cell necrosis in MnSOD-deficient cells growing in ethanol or in glucose, respectively. So, treatment with (acetyl)-salicylic acid can alter the yeast metabolism and is associated with cell death. We describe here the dramatic effects of salicylate on cellular control of the exit from a quiescence state. The growth recovery of long-term stationary phase cells was strongly inhibited in the presence of salicylate, to a degree proportional to the drug concentration. At high salicylate concentration, growth reactivation was completely repressed and associated with a dramatic loss of cell viability. Strikingly, both of these phenotypes were fully suppressed by increasing the cAMP signal without any variation of the exponential growth rate. Upon nutrient exhaustion, salicylate induced a premature lethal cell cycle arrest in the budded-G2/M phase that cannot be suppressed by PKA activation. We discuss how the dramatic antagonism between cAMP and salicylate could be conserved and impinge common targets in yeast and humans. Targeting quiescence of cancer cells with stem-like properties and their growth recovery from dormancy are major challenges in cancer therapy. If mechanisms underlying cAMP-salicylate antagonism will be defined in our model, this might have significant therapeutic implications.

7.
Cell Microbiol ; 20(10): e12863, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29845711

RESUMO

The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is central to signal transduction in many organisms. In pathogenic fungi such as Candida albicans, this signalling cascade has proven to be involved in several processes, such as virulence, indicating its potential importance in antifungal drug discovery. Candida glabrata is an upcoming pathogen of the same species, yet information regarding the role of cAMP-PKA signalling in virulence is largely lacking. To enable efficient monitoring of cAMP-PKA activity in this pathogen, we here present the usage of two FRET-based biosensors. Both variations in the activity of PKA and the quantity of cAMP can be detected in a time-resolved manner, as we exemplify by glucose-induced activation of the pathway. We also present information on how to adequately process and analyse the data in a mathematically correct and physiologically relevant manner. These sensors will be of great benefit for scientists interested in linking the cAMP-PKA signalling cascade to downstream processes, such as virulence, possibly in a host environment.


Assuntos
Técnicas Biossensoriais/métodos , Candida glabrata/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Candida glabrata/patogenicidade , Glucose/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Transdução de Sinais
8.
Biochem Biophys Res Commun ; 487(3): 594-599, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28433631

RESUMO

In Saccharomyces cerevisiae the second messenger cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) play a central role in metabolism regulation, stress resistance and cell cycle progression. To monitor cAMP levels and PKA activity in vivo in single S. cerevisiae cells, we expressed an Epac-based FRET probe and a FRET-based A-kinase activity reporter, which were proven to be useful live-cell biosensors for cAMP levels and PKA activity in mammalian cells. Regarding detection of cAMP in single yeast cells, we show that in wild type strains the CFP/YFP fluorescence ratio increased immediately after glucose addition to derepressed cells, while no changes were observed when glucose was added to a strain that is not able to produce cAMP. In addition, we had evidence for damped oscillations in cAMP levels at least in SP1 strain. Regarding detection of PKA activity, we show that in wild type strains the FRET increased after glucose addition to derepressed cells, while no changes were observed when glucose was added to either a strain that is not able to produce cAMP or to a strain with absent PKA activity. Taken together these probes are useful to follow activation of the cAMP/PKA pathway in single yeast cells and for long times (up to one hour).


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/análise , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos , AMP Cíclico/análise , Proteínas Quinases Dependentes de AMP Cíclico/análise , Corantes Fluorescentes/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia
9.
FEMS Yeast Res ; 16(3)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26895787

RESUMO

We recently showed that in hxk2Δ cells, showing constitutive localization of active Ras at the mitochondria, addition of acetic acid caused an increase of both apoptotic and necrotic cells compared with the wild-type strain, providing a new role for hexokinase 2 (EC 2.7.1.1) as an anti-apoptotic factor, besides its known role as a glycolytic enzyme and as a regulator of gene transcription of several Mig1-regulated genes. We also demonstrated that apoptosis induced by lack of Hxk2 may not require the activation of Yca1. Here, we show that deletion of HXK2 causes hypersensitivity to H2O2 and that addition of this well-known apoptotic stimulus to hxk2Δ cells causes an increase in the level ROS, apoptosis and mitochondrial membrane potential. We also show that deletion of AIF1 in hxk2Δ cells enhances survival after induction of apoptosis with both H2O2 and acetic acid, rescues the reduction of both growth rate and cell size, abrogates both H2O2 and acetic acid-induced ROS accumulation and decreases cell death, suggesting that Aif1 might be involved in both H2O2 and acetic acid-induced cell death in hxk2Δ cells. Moreover, we show that active Ras proteins relocalize to the plasma membrane and to the nucleus in hxk2Δ aif1Δ cells.


Assuntos
Apoptose , Hexoquinase/metabolismo , NADH NADPH Oxirredutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Ácido Acético/toxicidade , Deleção de Genes , Hexoquinase/genética , Peróxido de Hidrogênio/toxicidade , Potenciais da Membrana , Membranas Mitocondriais/fisiologia , Espécies Reativas de Oxigênio/análise , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
10.
Cell Cycle ; 14(15): 2429-38, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26046481

RESUMO

To investigate the specific target of PKA in the regulation of cell cycle progression and cell size we developed a new approach using the yeast strain GG104 bearing a deletion in adenylate cyclase gene and permeable to cAMP ( cyr1Δ, pde2Δ, msn2Δ, msn4Δ). In this strain the PKA activity is absent and can be activated by addition of cAMP in the medium, without any other change of the growth conditions. In the present work we show that the activation of PKA by exogenous cAMP in the GG104 strain exponentially growing in glucose medium caused a marked increase of cell size and perturbation of cell cycle with a transient arrest of cells in G1, followed by an accumulation of cells in G2/M phase with a minimal change in the growth rate. Deletion of CLN1 gene, but not of CLN2, abolished the transient G1 phase arrest. Consistently we found that PKA activation caused a transcriptional repression of CLN1 gene. Transcription of CLN1 is controlled by SBF and MBF dual-regulated promoter. We found that also the deletion of SWI4 gene abolished the transient G1 arrest suggesting that Swi4 is a target responsible for PKA modulation of G1/S phase transition. We generated a SWI4 allele mutated in the consensus site for PKA (Swi4(S159A)) and we found that expression of Swi4(S159A) protein in the GG104-Swi4Δ strain did not restore the transient G1 arrest induced by PKA activation, suggesting that Swi4 phosphorylation by PKA regulates CLN1 gene expression and G1/S phase transition.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Adenilil Ciclases/metabolismo , Proliferação de Células/efeitos dos fármacos , Tamanho Celular , AMP Cíclico/farmacologia , Ciclinas/metabolismo , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Fase G1/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica , Fosforilação , Regiões Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
11.
Cell Signal ; 26(5): 1147-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24518043

RESUMO

Data in literature suggest that budding yeast adenylate cyclase forms a membrane-associated complex with the upstream components of the cAMP/PKA pathway. Here we provide evidences that adenylate cyclase (Cyr1p) acts as a scaffold protein keeping Ras2 available for its regulatory factors. We show that in a strain with deletion of the CYR1 gene (cyr1Δ pde2Δ msn2Δ msn4Δ) the basal Ras2-GTP level is very high and this is independent on the lack of feedback inhibition that could result from the absence of adenylate cyclase activity. Moreover, strains effected either in the intrinsic adenylate cyclase activity (fil1 strain) or in the stimulation of adenylate cyclase activity by active G-proteins (lcr1 strain) had a normal basal and glucose-induced Ras2-GTP level, indicating that adenylate cyclase activity does not influence the Ras2 activation state and suggesting that Cyr1 protein is required for the proper interaction between Ras2 and the Ira proteins. We also provide evidence that the two Ras-binding sites mapped on Cyr1p are required for the signalling complex assembly. In fact, we show that the cyr1Δ strain expressing CYR1 alleles lacking either the LRR region or the C-terminal domain still have a high basal and glucose-induced Ras2-GTP level. In contrast, a mutant expressing a Cyr1 protein only missing the N-terminal domain showed a normal Ras2 activation pattern. Likewise, the Ras2-GTP levels are comparable in the wild type strain and the srv2Δ strain, supporting the hypothesis that Cap is not essential for the Ras-adenylate cyclase interaction.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas ras/metabolismo , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Sítios de Ligação , Domínio Catalítico , AMP Cíclico/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
Methods Mol Biol ; 1120: 391-405, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24470038

RESUMO

Ras proteins were highly conserved during evolution. They function as a point of convergence for different signalling pathways in eukaryotes and are involved in a wide range of cellular responses (shift from gluconeogenic to fermentative growth, breakdown of storage carbohydrates, stress resistance, growth control and determination of life span, morphogenesis and development, and others). These proteins are members of the small GTPase superfamily, which are active in the GTP-bound form and inactive in the GDP-bound form. Given the importance of studies on the Ras protein activation state to understand the detailed mechanism of Ras-mediated signal transduction, we provide here a simple, sensitive, and reliable method, based on the high affinity interaction of Ras-GTP with the Ras binding domain (RBD) of Raf1, to measure the level of Ras2-GTP on total Ras2 in Saccharomyces cerevisiae. Moreover, to study the localization of Ras-GTP in vivo in single S. cerevisiae cells, we expressed a probe consisting of a GFP fusion with a trimeric Ras Binding Domain of Raf1 (eGFP-RBD3), which was proven to be a useful live-cell biosensor for Ras-GTP in mammalian cells.


Assuntos
Guanosina Trifosfato/metabolismo , Espaço Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas ras/metabolismo , Western Blotting , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais , Transformação Genética , Vacúolos/metabolismo
13.
PLoS One ; 8(11): e79274, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244466

RESUMO

Using an eGFP-RBD3 probe, which specifically binds Ras-GTP, we recently showed that the fluorescent probe was localized to the plasma membrane and to the nucleus in wild type cells growing exponentially on glucose medium, indicating the presence of active Ras in these cellular compartments. To investigate the nuclear function of Ras-GTP, we generated a strain where Ras2 is fused to the nuclear export signal (NES) from the HIV virus, in order to exclude this protein from the nucleus. Our results show that nuclear active Ras2 is required for invasive growth development in haploid yeast, while the expression of the NES-Ras2 protein does not cause growth defects either on fermentable or non-fermentable carbon sources and does not influence protein kinase A (PKA) activity related phenotypes analysed. Moreover, we show that the cAMP/PKA pathway controls invasive growth influencing the localization of active Ras. In particular, we show that PKA activity plays a role in the localization of active Ras and influences the ability of the cells to invade the agar: high PKA activity leads to a predominant nuclear accumulation of active Ras and induces invasive growth, while low PKA activity leads to plasma membrane localization of active Ras and to a defective invasive growth phenotype.


Assuntos
Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
14.
Oxid Med Cell Longev ; 2013: 678473, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24089630

RESUMO

We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in the hxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis in S. cerevisiae. In particular, cells lacking HXK2 and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion of HXK2 causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.


Assuntos
Apoptose , Hexoquinase/deficiência , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas ras/metabolismo , Ácido Acético/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Deleção de Genes , Glucose/farmacologia , Hexoquinase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Necrose , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Int J Biochem Cell Biol ; 45(2): 384-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23127800

RESUMO

Ras proteins function as a point of convergence for different signalling pathways in eukaryotes and are involved in many cellular responses; their different subcellular locations could regulate distinct functions. To investigate the localization of active Ras in vivo in Saccharomyces cerevisiae, we expressed a probe consisting of a GFP fusion with a trimeric Ras binding domain of Raf1 (eGFP-RBD3), which binds Ras-GTP with a much higher affinity than Ras-GDP. Our results show that in wild type cells active Ras accumulates mainly at the plasma membrane and in the nucleus during growth on medium containing glucose, while it accumulates mainly in mitochondria in wild type glucose-starved cells and relocalizes to the plasma membrane and to the nucleus upon addition of this sugar. A similar pattern is observed in a strain deleted in the CYR1 gene indicating that the absence of adenylate cyclase does not impair the localization of Ras-GTP. Remarkably, in a gpa2Δ, but not in a gpr1Δ mutant, active Ras accumulates in internal membranes and mitochondria, both when cells are growing on glucose medium or are starved, indicating that Gpa2, but not Gpr1 is required for the recruitment of Ras-GTP at the plasma membrane and in the nucleus. Moreover, deletion of both HXK1 and HXK2 also causes a mitochondrial localization of the probe, which relocalizes to the plasma membrane and to the nucleus upon expression of HXK2 on a centromeric plasmid, suggesting that this kinase is involved in the proper localization of active Ras.


Assuntos
Membrana Celular/enzimologia , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas ras/metabolismo , Ativação Enzimática , Fermentação , Subunidades alfa de Proteínas de Ligação ao GTP , Proteínas de Fluorescência Verde/biossíntese , Hexoquinase/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-raf/biossíntese , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Célula Única
16.
EURASIP J Bioinform Syst Biol ; 2012(1): 10, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22818197

RESUMO

: In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway is involved in the regulation of cell growth and proliferation in response to nutritional sensing and stress conditions. The pathway is tightly regulated by multiple feedback loops, exerted by the protein kinase A (PKA) on a few pivotal components of the pathway. In this article, we investigate the dynamics of the second messenger cAMP by performing stochastic simulations and parameter sweep analysis of a mechanistic model of the Ras/cAMP/PKA pathway, to determine the effects that the modulation of these feedback mechanisms has on the establishment of stable oscillatory regimes. In particular, we start by studying the role of phosphodiesterases, the enzymes that catalyze the degradation of cAMP, which represent the major negative feedback in this pathway. Then, we show the results on cAMP oscillations when perturbing the amount of protein Cdc25 coupled with the alteration of the intracellular ratio of the guanine nucleotides (GTP/GDP), which are known to regulate the switch of the GTPase Ras protein. This multi-level regulation of the amplitude and frequency of oscillations in the Ras/cAMP/PKA pathway might act as a fine tuning mechanism for the downstream targets of PKA, as also recently evidenced by some experimental investigations on the nucleocytoplasmic shuttling of the transcription factor Msn2 in yeast cells.

17.
Biotechnol Adv ; 30(1): 99-107, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21741466

RESUMO

In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway plays a major role in the regulation of metabolism, stress resistance and cell cycle progression. We extend here a mechanistic model of the Ras/cAMP/PKA pathway that we previously defined by describing the molecular interactions and post-translational modifications of proteins, and perform a computational analysis to investigate the dynamical behaviors of the components of this pathway, regulated by different control mechanisms. We carry out stochastic simulations to consider, in particular, the effect of the negative feedback loops on the activity of both Ira2 (a Ras-GAP) and Cdc25 (a Ras-GEF) proteins. Our results show that stable oscillatory regimes for the dynamics of cAMP can be obtained only through the activation of these feedback mechanisms, and when the amount of Cdc25 is within a specific range. In addition, we highlight that the levels of guanine nucleotides pools are able to regulate the pathway, by influencing the transition between stable steady states and oscillatory regimes.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , ras-GRF1/metabolismo , Relógios Biológicos , Ciclo Celular , Simulação por Computador , Retroalimentação Fisiológica , Nucleotídeos de Guanina/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
18.
Curr Cancer Drug Targets ; 10(2): 192-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20088786

RESUMO

This paper reports the synthesis of a panel of small molecules with arylamides and arylsulfonamides groups and their biological activity in inhibiting nucleotide exchange on human Ras. The design of these molecules was guided by experimental and molecular modelling data previously collected on similar compounds. Aim of this work is the validation of the hypothesis that a phenyl hydroxylamine group linked to a second aromatic moiety generates a pharmacophore capable to interact with Ras and to inhibit its activation. In vitro experiments on purified human Ras clearly show that the presence of an aromatic hydroxylamine and a sulfonamide group in the same molecule is a necessary condition for Ras binding and nucleotide exchange inhibition. The inhibitor potency is lower in molecules in which either the hydroxylamine has been replaced by other functional groups or the sulfonamide has been replaced by an amide. In the case both these moieties, the hydroxylamine and sulfonamide are absent, inactive compounds are obtained.


Assuntos
Hidroxilaminas/farmacologia , Sulfonamidas/farmacologia , Proteínas ras/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Desenho de Fármacos , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidroxilaminas/química , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Mutação/genética , Células NIH 3T3 , Relação Estrutura-Atividade , Sulfonamidas/química , Técnicas do Sistema de Duplo-Híbrido , Proteínas ras/genética , Proteínas ras/metabolismo , ras-GRF1/metabolismo
19.
J Cell Sci ; 122(Pt 5): 706-15, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19208759

RESUMO

Elucidating the mechanisms by which eukaryotic cells coordinate environmental signals with intracellular ;fate' decisions, such as apoptosis, remains one of the important challenges facing cell biologists. It has recently emerged that the dynamic nature of the actin cytoskeleton is an important factor in the linkage of sensation of extracellular stimuli to signalling mechanisms that regulate programmed cell death. In yeast, actin has been shown to play a role in the regulation of apoptosis as cells prepare themselves for quiescence in the face of nutritional exhaustion, by facilitating the shutdown of Ras-cAMP-PKA pathway activity. Here, we demonstrate that the loss of Whi2p function, a protein known to influence cell cycle exit under conditions of nutritional stress, leads to cell death in yeast that displays the hallmarks of actin-mediated apoptosis. We show that actin-mediated apoptosis occurs as a result of inappropriate Ras-cAMP-PKA activity in Deltawhi2 cells. Cells lacking Whi2p function exhibit an aberrant accumulation of activated Ras2 at the mitochondria in response to nutritional depletion. This study provides evidence that the shutdown of cAMP-PKA signalling activity in wild-type cells involves Whi2p-dependent targeting of Ras2p to the vacuole for proteolysis. We also demonstrate for the first time that Whi2p-dependent regulation of cAMP-PKA signalling plays a physiological role in the differentiation of yeast colonies by facilitating elaboration of distinct zones of cell death.


Assuntos
Actinas/metabolismo , Apoptose/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo , Animais , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...