Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurol ; 271(2): 794-803, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37801095

RESUMO

BACKGROUND: There is an unmet need in amyotrophic lateral sclerosis (ALS) to provide specific biomarkers for the disease. Due to their easy availability, we aimed to investigate whether routine blood parameters provide useful clues for phenotypic classification and disease prognosis. METHODS: We analyzed a large inpatient cohort of 836 ALS patients who underwent deep phenotyping with evaluation of the clinical and neurophysiological burden of upper (UMN) and lower (LMN) motor neuron signs. Disability and progression rate were measured through the revised ALS Functional Rating Scale (ALSFRS-R) and its changes during time. Cox regression analysis was performed to assess survival associations. RESULTS: Creatinine significantly correlated with LMN damage (r = 0.38), active (r = 0.18) and chronic (r = 0.24) denervation and baseline ALSFRS-R (r = 0.33). Creatine kinase (CK), alanine (ALT) and aspartate (AST) transaminases correlated with active (r = 0.35, r = 0.27, r = 0.24) and chronic (r = 0.37, r = 0.20, r = 0.19) denervation, while albumin and C-reactive protein significantly correlated with LMN score (r = 0.20 and r = 0.17). Disease progression rate showed correlations with chloride (r = -0.19) and potassium levels (r = -0.16). After adjustment for known prognostic factors, total protein [HR 0.70 (95% CI 0.57-0.86)], creatinine [HR 0.86 (95% CI 0.81-0.92)], chloride [HR 0.95 (95% CI 0.92-0.99)], lactate dehydrogenase [HR 0.99 (95% CI 0.99-0.99)], and AST [HR 1.02 (95% CI 1.01-1.02)] were independently associated with survival. CONCLUSIONS: Creatinine is a reliable biomarker for ALS, associated with clinical features, disability and survival. Markers of nutrition/inflammation may offer additional prognostic information and partially correlate with clinical features. AST and chloride could further assist in predicting progression rate and survival.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Creatinina , Cloretos , Progressão da Doença , Prognóstico , Biomarcadores
2.
Front Cell Neurosci ; 17: 1285836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116398

RESUMO

Introduction: COVID-19 typically causes Q7 respiratory disorders, but a high proportion of patients also reports neurological and neuromuscular symptoms during and after SARSCoV-2 infection. Despite a number of studies documenting SARS-CoV-2 infection of various neuronal cell populations, the impact of SARS-CoV-2 exposure on motor neuronal cells specifically has not been investigated so far. Methods: Thus, by using human iPSC-derived motor neurons (iPSC-MNs) we assessed: (i) the expression of SARS-CoV-2 main receptors; (ii) iPSC-MN infectability by SARS-CoV-2; and (iii) the effect of SARS-CoV-2 exposure on iPSC-MN transcriptome. Results: Gene expression profiling and immunofluorescence (IF) analysis of the main host cell receptors recognized by SARS-CoV-2 revealed that all of them are expressed in iPSC-MNs, with CD147 and NRP1 being the most represented ones. By analyzing SARS-CoV-2 N1 and N2 gene expression over time, we observed that human iPSC-MNs were productively infected by SARS-CoV-2 in the absence of cytopathic effect. Supernatants collected from SARS-CoV-2-infected iPSC-MNs were able to re-infect VeroE6 cells. Image analyses of SARS-CoV-2 nucleocapsid proteins by IF confirmed iPSC-MN infectability. Furthermore, SARS-CoV-2 infection in iPSCMNs significantly altered the expression of genes (IL-6, ANG, S1PR1, BCL2, BAX, Casp8, HLA-A, ERAP1, CD147, MX1) associated with cell survival and metabolism, as well as antiviral and inflammatory response. Discussion: These results suggest for the very first time that SARS-CoV-2 can productively infect human iPSC-derived MNs probably by binding CD147 and NRP1 receptors. Such information will be important to unveil the biological bases of neuromuscular disorders characterizing SARS-CoV-2 infection and the so called long-COVID symptoms.

3.
Neurol Sci ; 44(9): 3287-3290, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37284933

RESUMO

INTRODUCTION: Alzheimer's disease  (AD) is characterized by decreased cerebrospinal fluid (CSF) Aß42 and Aß42/Aß40 ratio. Aß peptides can now be measured also in plasma and are promising peripheral biomarkers for AD. We evaluated the relationships of plasma Aß species with their CSF counterparts, kidney function, and serum/CSF albumin ratio (Q-Alb) in AD patients. MATERIALS AND METHODS: We measured plasma Aß42 and Aß40, as well as CSF AD biomarkers, with the fully automated Lumipulse platform in a cohort of N = 30 patients with clinical and neurochemical diagnosis of AD. RESULTS: The two plasma Aß peptides correlated strongly with each other (r = 0.7449), as did the corresponding CSF biomarkers (r = 0.7670). On the contrary, the positive correlations of plasma Aß42, Aß40, and Aß42/Aß40 ratio with their CSF counterparts and the negative correlation of plasma Aß42/Aß40 ratio with CSF P-tau181 were not statistically significant. Plasma levels of both Aß species negatively correlated with estimated glomerular filtration rate (eGFR) (Aß42: r = -0.4138; Aß40: r = -0.6015), but plasma Aß42/Aß40 ratio did not. Q-Alb did not correlate with any plasma Aß parameter. DISCUSSION: Plasma Aß42 and Aß40 are critically influenced by kidney function; however, their ratio is advantageously spared from this effect. The lack of significant correlations between plasma Aß species and their CSF counterparts is probably mainly due to small sample size and inclusion of only Aß + individuals. Q-Alb is not a major determinant of plasma Aß concentrations, highlighting the uncertainties about mechanisms of Aß transfer between CNS and periphery.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Albumina Sérica , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Biomarcadores , Rim
4.
Neurol Sci ; 44(10): 3697-3702, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369876

RESUMO

INTRODUCTION: Plasma levels of phosphorylated tau (P-tau181) have been recently reported to be increased in amyotrophic lateral sclerosis (ALS) and associated with lower motor neuron (LMN) impairment. PATIENTS AND METHODS: We quantified plasma P-tau181 (pP-tau181) in a cohort of 29 deeply phenotyped ALS patients using the new fully automated Lumipulse assay and analysed phenotype-biomarker correlations. RESULTS: pP-tau181 levels correlated positively with a clinical LMN score (r = 0.3803) and negatively, albeit not significantly, with a composite index of muscle strength (r = - 0.3416; p = 0.0811), but not with Penn Upper Motor Neuron (UMN) Score. Accordingly, pP-tau181 correlated with electromyographic indices of spinal active and chronic denervation (r = 0.4507 and r = 0.3864, respectively) but not with transcranial magnetic stimulation parameters of UMN dysfunction. pP-tau181 levels did not correlate with those in the cerebrospinal fluid (CSF), serum NFL, serum GFAP, CSF/serum albumin ratio, or estimated glomerular filtration rate, but correlated with plasma creatine kinase levels (r = 0.4661). Finally, while not being associated with neuropsychological phenotype, pP-tau181 correlated negatively with pH (r = - 0.5632) and positively with partial pressure of carbon dioxide (PaCO2; r = 0.7092), bicarbonate (sHCO3-; r = 0.6667) and base excess (r = 0.6611) on arterial blood gas analysis. DISCUSSION: pP-tau181 has potential as ALS biomarker and could be associated with LMN impairment. Its raised levels might reflect pathophysiological processes (tau hyperphosphorylation and/or release) occurring in the axons of LMNs distantly from the CNS and the CSF. pP-tau181 could also be associated with respiratory dysfunction.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Neurônios Motores , Biomarcadores/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
6.
Stem Cell Res ; 66: 103008, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565680

RESUMO

We generated an iPSC line from a patient with spastic paraplegia type 10 (SPG10) carrying the novel missense variant c.50G > A (p.R17Q) in the N-terminal motor domain of the kinesin family member 5A (KIF5A) gene. This patient-derived in vitro cell model will help to investigate the role of different KIF5A mutations in inducing neurodegeneration in spastic paraplegia and in other KIF5A-related disorders, including Charcot-Marie-Tooth type 2 (CMT2) and amyotrophic lateral sclerosis (ALS).


Assuntos
Células-Tronco Pluripotentes Induzidas , Paraplegia Espástica Hereditária , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Paraplegia Espástica Hereditária/genética , Cinesinas/genética , Mutação/genética , Paraplegia
7.
J Neurol ; 270(2): 898-908, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36308529

RESUMO

INTRODUCTION: Amyotrophic lateral sclerosis (ALS) individuals carrying the hexanucleotide repeat expansion (HRE) in the C9orf72 gene (C9Pos) have been described as presenting distinct features compared to the general ALS population (C9Neg). We aim to identify the phenotypic traits more closely associated with the HRE and analyse the role of the repeat length as a modifier factor. METHODS: We studied a cohort of 960 ALS patients (101 familial and 859 sporadic cases). Motor phenotype was determined using the MRC scale, the lower motor neuron score (LMNS) and the Penn upper motor neuron score (PUMNS). Neuropsychological profile was studied using the Italian version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS), the Frontal Behavioral Inventory (FBI), the Beck Depression Inventory-II (BDI-II) and the State-Trait Anxiety Inventory (STAI). A two-step PCR protocol and Southern blotting were performed to determine the presence and the size of C9orf72 HRE, respectively. RESULTS: C9orf72 HRE was detected in 55/960 ALS patients. C9Pos patients showed a younger onset, higher odds of bulbar onset, increased burden of UMN signs, reduced survival and higher frequency of concurrent dementia. We found an inverse correlation between the HRE length and the performance at ECAS ALS-specific tasks (P = 0.031). Patients also showed higher burden of behavioural disinhibition (P = 1.6 × 10-4), lower degrees of depression (P = 0.015) and anxiety (P = 0.008) compared to C9Neg cases. CONCLUSIONS: Our study provides an extensive characterization of motor, cognitive and behavioural features of C9orf72-related ALS, indicating that the C9orf72 HRE size may represent a modifier of the cognitive phenotype.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/psicologia , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Proteínas/genética , Cognição , Demência Frontotemporal/genética
8.
J Neurol ; 269(11): 5691-5701, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35781535

RESUMO

BACKGROUND: Increased serum levels of neurofilament light chain (sNFL), a biomarker of neuroaxonal damage, have been reported in patients with Covid-19. We aimed at investigating whether sNFL is increased in Covid-19 patients without major neurological manifestations, is associated with disease severity, respiratory and routine blood parameters, and changes longitudinally in the short term. METHODS: sNFL levels were measured with single molecule array (Simoa) technology in 57 hospitalized Covid-19 patients without major neurological manifestations and in 30 neurologically healthy controls. Patients were evaluated for PaO2/FiO2 ratio on arterial blood gas, Brescia Respiratory Covid Severity Scale (BRCSS), white blood cell counts, serum C-reactive protein (CRP), plasma D-dimer, plasma fibrinogen, and serum creatinine at admission. In 20 patients, NFL was also measured on serum samples obtained at a later timepoint during the hospital stay. RESULTS: Covid-19 patients had higher baseline sNFL levels compared to controls, regardless of disease severity. Baseline sNFL correlated with serum CRP and plasma D-dimer in patients with mild disease, but was not associated with measures of respiratory impairment. Longitudinal sNFL levels tended to be higher than baseline ones, albeit not significantly, and correlated with serum CRP and plasma D-dimer. The PaO2/FiO2 ratio was not associated with longitudinal sNFL, whereas BRCSS only correlated with longitudinal sNFL variation. CONCLUSIONS: We provide neurochemical evidence of subclinical axonal damage in Covid-19 also in the absence of major neurological manifestations. This is apparently not fully explained by hypoxic injury; rather, systemic inflammation might promote this damage. However, a direct neurotoxic effect of SARS-CoV-2 cannot be excluded.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Biomarcadores , Proteína C-Reativa , COVID-19/complicações , Creatinina , Fibrinogênio , Humanos , Filamentos Intermediários , Proteínas de Neurofilamentos , SARS-CoV-2
9.
Artigo em Inglês | MEDLINE | ID: mdl-34382491

RESUMO

Objective: The presence of the hexanucleotide repeat expansion (HRE) in C9orf72 gene is associated to the ALS/FTD spectrum, but also to parkinsonisms. We here describe an Italian family with the father diagnosed with Parkinson disease (PD) at the age of 67 and the two daughters developing FTD and ALS at 45 years of age. We searched for C9orf72 HRE with possible genetic and epigenetic modifiers to account for the intrafamilial phenotypic variability. Methods: C9orf72 mutational analysis was performed by fragment length analysis, Repeat-primed PCR and Southern blot. Targeted next generation sequencing was used to analyze 48 genes associated to neurodegenerative diseases. Promoter methylation was analyzed by bisulfite sequencing. Results: Genetic analysis identified C9orf72 HRE in all the affected members with a similar repeat expansion size. Both the father and the FTD daughter also carried the heterozygous p.Ile946Phe variant in ATP13A2 gene, associated to PD. In addition, the father also showed a heterozygous EIF4G1 variant (p.Ala13Pro), that might increase his susceptibility to develop PD. The DNA methylation analysis showed that all the 26 CpG sites within C9orf72 promoter were unmethylated in all family members. Conclusions: Neither C9orf72 HRE size nor promoter methylation act as disease modifiers within this family, at least in blood, not excluding HRE mosaicism and a different methylation pattern in the brain. However, the presence of rare genetic variants in PD genes suggests that they may influence the clinical manifestation in the father. Other genetic and/or epigenetic modifiers must be responsible for disease variability in this C9orf72 family case.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Parkinson , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Epigênese Genética/genética , Demência Frontotemporal/genética , Humanos , Doença de Parkinson/genética , Fenótipo
10.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638725

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of the corticospinal motor neurons, which ultimately leads to death. The repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) represents the most common genetic cause of ALS and it is also involved in the pathogenesis of other neurodegenerative disorders. To offer insights into C9ORF72-mediated pathogenesis, we quantitatively analyzed the proteome of patient-derived primary skin fibroblasts from ALS patients carrying the C9ORF72 mutation compared with ALS patients who tested negative for it. Differentially expressed proteins were identified, used to generate a protein-protein interaction network and subjected to a functional enrichment analysis to unveil altered molecular pathways. ALS patients were also compared with patients affected by frontotemporal dementia carrying the C9ORF72 repeat expansion. As a result, we demonstrated that the molecular pathways mainly altered in fibroblasts (e.g., protein homeostasis) mirror the alterations observed in C9ORF72-mutated neurons. Moreover, we highlighted novel molecular pathways (nuclear and mitochondrial transports, vesicle trafficking, mitochondrial bioenergetics, glucose metabolism, ER-phagosome crosstalk and Slit/Robo signaling pathway) which might be further investigated as C9ORF72-specific pathogenetic mechanisms. Data are available via ProteomeXchange with the identifier PXD023866.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Expansão das Repetições de DNA , Fibroblastos , Proteoma , Transdução de Sinais/genética , Pele , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/genética , Proteoma/metabolismo , Pele/metabolismo , Pele/patologia
11.
Mol Neurobiol ; 58(11): 5682-5702, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34390468

RESUMO

The nuclear RNA-binding protein TDP-43 forms abnormal cytoplasmic aggregates in the brains of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients and several molecular mechanisms promoting TDP-43 cytoplasmic mislocalization and aggregation have been proposed, including defects in nucleocytoplasmic transport, stress granules (SG) disassembly and post-translational modifications (PTM). SUMOylation is a PTM which regulates a variety of cellular processes and, similarly to ubiquitination, targets lysine residues. To investigate the possible regulatory effects of SUMOylation on TDP-43 activity and trafficking, we first assessed that TDP-43 is SUMO-conjugated in the nuclear compartment both covalently and non-covalently in the RRM1 domain at the predicted lysine 136 and SUMO-interacting motif (SIM, 106-110 residues), respectively. By using the SUMO-mutant TDP-43 K136R protein, we demonstrated that SUMOylation modifies TDP-43 splicing activity, specifically exon skipping, and influences its sub-cellular localization and recruitment to SG after oxidative stress. When promoting deSUMOylation by SENP1 enzyme over-expression or by treatment with the cell-permeable SENP1 peptide TS-1, the cytoplasmic localization of TDP-43 increased, depending on its SUMOylation. Moreover, deSUMOylation by TS-1 peptide favoured the formation of small cytoplasmic aggregates of the C-terminal TDP-43 fragment p35, still containing the SUMO lysine target 136, but had no effect on the already formed p25 aggregates. Our data suggest that TDP-43 can be post-translationally modified by SUMOylation which may regulate its splicing function and trafficking, indicating a novel and druggable mechanism to explore as its dysregulation may lead to TDP-43 pathological aggregation in ALS and FTD.


Assuntos
Núcleo Celular/química , Citoplasma/química , Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/análise , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/análise , Neuroblastoma , Fragmentos de Peptídeos/farmacologia , Cloreto de Potássio/farmacologia , Conformação Proteica , Transporte Proteico , Interferência de RNA , Splicing de RNA , RNA Interferente Pequeno/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Grânulos de Estresse , Sumoilação
13.
Neurobiol Dis ; 145: 105051, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827688

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases characterized by the presence of neuropathological aggregates of phosphorylated TDP-43 (P-TDP-43) protein. The RNA-binding protein TDP-43 participates also to cell stress response by forming stress granules (SG) in the cytoplasm to temporarily arrest translation. The hypothesis that TDP-43 pathology directly arises from SG has been proposed but is still under debate because only sub-lethal stress conditions have been tested experimentally so far. In this study we reproduced a mild and chronic oxidative stress by sodium arsenite to better mimic the persistent and subtle alterations occurring during the neurodegenerative process in primary fibroblasts and induced pluripotent stem cell-derived motoneurons (iPSC-MN) from ALS patients carrying mutations in TARDBP and C9ORF72 genes. We found that not only the acute sub-lethal stress usually used in literature, but also the chronic oxidative insult was able to induce SG formation in both primary fibroblasts and iPSC-MN. We also observed the recruitment of TDP-43 into SG only upon chronic stress in association to the formation of distinct cytoplasmic P-TDP-43 aggregates and a significant increase of the autophagy marker p62. A quantitative analysis revealed differences in both the number of cells forming SG in mutant ALS and healthy control fibroblasts, suggesting a specific genetic contribution to cell stress response, and in SG size, suggesting a different composition of these cytoplasmic foci in the two stress conditions. Upon removal of arsenite, the recovery from chronic stress was complete for SG and P-TDP-43 aggregates at 72 h with the exception of p62, which was reduced but still persistent, supporting the hypothesis that autophagy impairment may drive pathological TDP-43 aggregates formation. The gene-specific differences observed in fibroblasts in response to oxidative stress were not present in iPSC-MN, which showed a similar formation of SG and P-TDP-43 aggregates regardless their genotype. Our results show that SG and P-TDP-43 aggregates may be recapitulated in patient-derived neuronal and non-neuronal cells exposed to prolonged oxidative stress, which may be therefore exploited to study TDP-43 pathology and to develop individualized therapeutic strategies for ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/patologia , Neurônios Motores/patologia , Estresse Oxidativo/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas
14.
J Cell Mol Med ; 24(7): 4051-4060, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32125773

RESUMO

As for the majority of neurodegenerative diseases, pathological mechanisms of amyotrophic lateral sclerosis (ALS) have been challenging to study due to the difficult access to alive patients' cells. Induced pluripotent stem cells (iPSCs) offer a useful in vitro system for modelling human diseases. iPSCs can be theoretically obtained by reprogramming any somatic tissue although fibroblasts (FB) remain the most used cells. However, reprogramming peripheral blood cells (PB) may offer significant advantages. In order to investigate whether the choice of starting cells may affect reprogramming and motor neuron (MNs) differentiation potential, we used both FB and PB from a same C9ORF72-mutated ALS patient to obtain iPSCs and compared several hallmarks of the pathology. We found that both iPSCs and MNs derived from the two tissues showed identical properties and features and can therefore be used interchangeably, giving the opportunity to easily obtain iPSCs from a more manageable source of cells, such as PB.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Proteína C9orf72/genética , Reprogramação Celular/genética , Doenças Neurodegenerativas/sangue , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Proteína C9orf72/sangue , Diferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia
15.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766750

RESUMO

Cytoplasmic aggregates and nuclear depletion of the ubiquitous RNA-binding protein TDP-43 have been described in the autoptic brain tissues of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTLD) patients and both TDP-43 loss-of-function and gain-of-function mechanisms seem to contribute to the neurodegenerative process. Among the wide array of RNA targets, TDP-43 regulates progranulin (GRN) mRNA stability and sortilin (SORT1) splicing. Progranulin is a secreted neurotrophic and neuro-immunomodulatory factor whose endocytosis and delivery to the lysosomes are regulated by the neuronal receptor sortilin. Moreover, GRN loss-of-function mutations are causative of a subset of FTLD cases showing TDP-43 pathological aggregates. Here we show that TDP-43 loss-of-function differently affects the progranulin-sortilin axis in murine and human neuronal cell models. We demonstrated that although TDP-43 binding to GRN mRNA occurs similarly in human and murine cells, upon TDP-43 depletion, a different control of sortilin splicing and protein content may determine changes in extracellular progranulin uptake that account for increased or unchanged secreted protein in murine and human cells, respectively. As targeting the progranulin-sortilin axis has been proposed as a therapeutic approach for GRN-FTLD patients, the inter-species differences in TDP-43-mediated regulation of this pathway must be considered when translating studies from animal models to patients.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Progranulinas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Progranulinas/genética , Especificidade da Espécie
16.
Biochim Biophys Acta Gene Regul Mech ; 1862(9): 194413, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31382054

RESUMO

The RNA-binding protein TDP-43, associated to amyotrophic lateral sclerosis and frontotemporal dementia, regulates the alternative splicing of several genes, including the skipping of TNIK exon 15. TNIK, a genetic risk factor for schizophrenia and causative for intellectual disability, encodes for a Ser/Thr kinase regulating negatively F-actin dynamics. Here we show that in the human adult nervous system TNIK exon 15 is mostly included compared to the other tissues and that, during neuronal differentiation of human induced pluripotent stem cells and of human neuroblastoma cells, TNIK exon 15 inclusion increases independently of TDP-43 protein content. By studying the possible molecular interplay of TDP-43 with brain-specific splicing factors, we found that the neuronal NOVA-1 protein competitively inhibits both TDP-43 and hnRNPA2/B1 skipping activity on TNIK by means of a RNA-dependent interaction and that this competitive mechanism is common to other TDP-43 RNA targets. We also show that the TNIK protein isoforms including/excluding exon 15 differently regulate cell spreading in non-neuronal cells and neuritogenesis in primary cortical neurons. Our data suggest a complex regulation between the ubiquitous TDP-43 and the neuron-specific NOVA-1 splicing factors in the brain that may help better understand the pathobiology of both neurodegenerative diseases and schizophrenia.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/genética , Esquizofrenia/genética , Processamento Alternativo/genética , Linhagem Celular , Proteínas de Ligação a DNA/química , Éxons/genética , Humanos , Antígeno Neuro-Oncológico Ventral , Neurônios/metabolismo , Neurônios/patologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinases/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Esquizofrenia/patologia
18.
Mult Scler Relat Disord ; 25: 192-195, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30099204

RESUMO

Pathological repeat expansion (RE) of the C9orf72 hexanucleotide sequence is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia disease continuum, although other heterogeneous clinical phenotypes have been documented. The occurrence of multiple sclerosis (MS) in some C9orf72 carriers with a more severe ALS disease course has suggested a possible modifying role for MS. However, C9orf72 RE seems not to play a role in MS pathogenesis. In this study, we screened C9orf72 in 189 Italian patients with primary progressive MS (PPMS), a rare clinical form characterized by less inflammation over neurodegenerative features. We failed to detect C9orf72 RE, but a significant representation of intermediate alleles (≥ 20 units) was observed in our PPMS cohort (2.1%) compared to healthy controls (0%, p < 0.05). In the normal range, allele distribution showed a trimodal pattern (2,5,8-repeat units) in PPMS and healthy controls with no significant difference. Our findings further demonstrate that C9orf72 RE is not genetically associated to MS spectrum, but suggest that intermediate alleles may represent risk factors as already reported for Parkinson disease.


Assuntos
Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Esclerose Múltipla Crônica Progressiva/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Frequência do Gene , Testes Genéticos , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas
19.
Artigo em Inglês | MEDLINE | ID: mdl-29490503

RESUMO

Large expansions of a noncoding GGGGCC repeat in the C9orf72 gene are the main cause of amyotrophic lateral sclerosis (ALS). The GGGGCC repeat is contiguous with another GC-rich region. Recent studies reported a significantly higher frequency of insertions/deletions within the GC-rich region in patients carrying the GGGGCC expansion. A GTGGT motif comprised within the GC-rich region, which joins two 100% GC sequences, was frequently deleted, supporting the hypothesis that these deletions could make the region more prone to slippage and pathological expansion. To confirm this hypothesis, we sequenced the GC-rich region adjacent the GGGGCC repeat in ALS patients, 116 C9orf72 expansion carriers, 219 non-carriers, and 223 healthy controls, from Italian and Turkish cohorts. Deletions were significantly more frequent in C9orf72 expansion carriers (6%) compared to non-carrier ALS patients (0.46%, OR =14.00, 95% CI =1.71-306.59, p = 0.003), to controls (0%, OR =16.29, 95% CI =2.12-725.99, p = 4.86 × 10-4) and to the whole cohort of non-carriers (0.2%, OR =28.51, 95% CI =3.47-618.91, p = 9.58 × 10-5). Among expansion carriers, deletions with or without the GTGGT motif were equally distributed (4 vs. 3). The frequency of insertions was not statistically different between C9orf72 expansion carriers and any other group including the whole cohort of non-carriers (p = 0.439, Fisher's exact test). Our data confirmed the association between deletions within GC-rich region and the GGGGCC expansion in Italian and Turkish cases, although we did not confirm a role of the GTGGT element deletion. Further studies will be therefore necessary to assess the causal relationships between contiguous deletions of the GC-rich region and the GGGGCC expansion.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA , Esclerose Lateral Amiotrófica/epidemiologia , Estudos de Coortes , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Itália/epidemiologia , Masculino , Turquia/epidemiologia
20.
Mol Genet Metab Rep ; 13: 14-17, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28761814

RESUMO

We report on a family with occipital horn syndrome (OHS) diagnosed in the proband's late fifties. A novel ATP7A pathogenic variant (c.4222A > T, p.(Lys1408*)), representing the first nonsense variant and the second late truncation causing OHS rather than classic Menkes disease, was found to segregate in the family. The predicted maintenance of transmembrane domains is consistent with a residual protein activity, which may explain the mild clinical presentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...