Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36754628

RESUMO

Age-related cognitive decline is related to cellular and systems-level disruptions across multiple brain regions. Because age-related cellular changes within different structures do not show the same patterns of dysfunction, interventions aimed at optimizing function of large-scale brain networks may show greater efficacy at improving cognitive outcomes in older adults than traditional pharmacotherapies. The current study aimed to leverage a preclinical rat model of aging to determine whether cognitive training in young and aged male rats with a computerized paired-associates learning (PAL) task resulted in changes in global resting-state functional connectivity. Moreover, seed-based functional connectivity was used to examine resting state connectivity of cortical areas involved in object-location associative memory and vulnerable in old age, namely the medial temporal lobe (MTL; hippocampal cortex and perirhinal cortex), retrosplenial cortex (RSC), and frontal cortical areas (prelimbic and infralimbic cortices). There was an age-related increase in global functional connectivity between baseline and post-training resting state scans in aged, cognitively trained rats. This change in connectivity following cognitive training was not observed in young animals, or rats that traversed a track for a reward between scan sessions. Relatedly, an increase in connectivity between perirhinal and prelimbic cortices, as well as reduced reciprocal connectivity within the RSC, was found in aged rats that underwent cognitive training, but not the other groups. Subnetwork activation was associated with task performance across age groups. Greater global functional connectivity and connectivity between task-relevant brain regions may elucidate compensatory mechanisms that can be engaged by cognitive training.


Assuntos
Encéfalo , Lobo Temporal , Masculino , Ratos , Animais , Encéfalo/fisiologia , Lobo Temporal/fisiologia , Mapeamento Encefálico/métodos , Hipocampo , Cognição/fisiologia , Imageamento por Ressonância Magnética
2.
Sci Rep ; 10(1): 19843, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199790

RESUMO

Stimuli presented at short temporal delays before functional magnetic resonance imaging (fMRI) can have a robust impact on the organization of synchronous activity in resting state networks. This presents an opportunity to investigate how sensory, affective and cognitive stimuli alter functional connectivity in rodent models. In the present study we assessed the effect on functional connectivity of a familiar contextual stimulus presented 10 min prior to sedation for imaging. A subset of animals were co-presented with an unfamiliar social stimulus in the same environment to further investigate the effect of familiarity on network topology. Rats were imaged at 11.1 T and graph theory analysis was applied to matrices generated from seed-based functional connectivity data sets with 144 brain regions (nodes) and 10,152 pairwise correlations (after excluding 144 diagonal edges). Our results show substantial changes in network topology in response to the familiar (context). Presentation of the familiar context, both in the absence and presence of the social stimulus, strongly reduced network strength, global efficiency, and altered the location of the highest eigenvector centrality nodes from cortex to the hypothalamus. We did not observe changes in modular organization, nodal cartographic assignments, assortative mixing, rich club organization, and network resilience. We propose that experiential factors, perhaps involving associative or episodic memory, can exert a dramatic effect on functional network strength and efficiency when presented at a short temporal delay before imaging.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Hipotálamo/diagnóstico por imagem , Animais , Feminino , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Memória Episódica , Ratos
3.
Mol Neurobiol ; 57(10): 4045-4059, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32651758

RESUMO

Markers of brain aging and cognitive decline are thought to be influenced by peripheral inflammation. This study compared the effects of repeated lipopolysaccharide (LPS) treatment in young rats to age-related changes in hippocampal-dependent cognition and transcription. Young Fischer 344 X Brown Norway hybrid rats were given intraperitoneal injections once a week for 7 weeks with either LPS or vehicle. Older rats received a similar injection schedule of vehicle. Old vehicle and young LPS rats exhibited a delay-dependent impairment in spatial memory. Further, LPS treatment reduced the hippocampal CA3-CA1 synaptic response. RNA sequencing, performed on CA1, indicated an increase in genes linked to neuroinflammation in old vehicle and young LPS animals. In contrast to an age-related decrease in transcription of synaptic genes, young LPS animals exhibited increased expression of genes that support the growth and maintenance of synapses. We suggest that the increased expression of genes for growth and maintenance of synapses in young animals represents neuronal resilience/recovery in response to acute systemic inflammation. Thus, the results indicate that repeated LPS treatment does not completely recapitulate the aging phenotype for synaptic function, possibly due to the chronic nature of systemic inflammation in aging and resilience of young animals to acute treatments.


Assuntos
Envelhecimento/fisiologia , Biomarcadores/metabolismo , Hipocampo/fisiologia , Lipopolissacarídeos/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Hipocampo/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Proteínas do Tecido Nervoso/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Memória Espacial/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transcriptoma/genética
4.
J Neurosci ; 40(30): 5871-5891, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32576620

RESUMO

Manganese exposure produces Parkinson's-like neurologic symptoms, suggesting a selective dysregulation of dopamine transmission. It is unknown, however, how manganese accumulates in dopaminergic brain regions or how it regulates the activity of dopamine neurons. Our in vivo studies in male C57BLJ mice suggest that manganese accumulates in dopamine neurons of the VTA and substantia nigra via nifedipine-sensitive Ca2+ channels. Manganese produces a Ca2+ channel-mediated current, which increases neurotransmitter release and rhythmic firing activity of dopamine neurons. These increases are prevented by blockade of Ca2+ channels and depend on downstream recruitment of Ca2+-activated potassium channels to the plasma membrane. These findings demonstrate the mechanism of manganese-induced dysfunction of dopamine neurons, and reveal a potential therapeutic target to attenuate manganese-induced impairment of dopamine transmission.SIGNIFICANCE STATEMENT Manganese is a trace element critical to many physiological processes. Overexposure to manganese is an environmental risk factor for neurologic disorders, such as a Parkinson's disease-like syndrome known as manganism. We found that manganese concentration-dependently increased the excitability of dopamine neurons, decreased the amplitude of action potentials, and narrowed action potential width. Blockade of Ca2+ channels prevented these effects as well as manganese accumulation in the mouse midbrain in vivo Our data provide a potential mechanism for manganese regulation of dopaminergic neurons.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Manganês/metabolismo , Manganês/toxicidade , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
5.
Brain Struct Funct ; 225(1): 427-439, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31894407

RESUMO

Imaging biomarkers for immune activation may be valuable for early-stage detection, therapeutic testing, and research on neurodegenerative conditions. In the present study, we determined whether diffusion magnetic resonance imaging-derived free water signal is a sensitive marker for neuroinflammatory effects of interferon-gamma (Ifn-γ). Neonatal wild-type mice were injected in the cerebral ventricles with recombinant adeno-associated viruses expressing the inflammatory cytokine Ifn-γ. Groups of mice expressing Ifn-γ and age-matched controls were imaged at 1, 5 and 8 months. Mice deficient in Ifngr1-/- and Stat1-/- were scanned at 5 months as controls for the signaling cascades activated by Ifn-γ. The results indicate that Ifn-γ affected fractional anisotropy (FA), mean diffusivity (MD), and free water (FW) in white matter structures, midline cortical areas, and medial thalamic areas. In these structures, FA and MD decreased progressively from 1 to 8 months of age, while FW increased significantly. The observed reductions in FA and MD and increased FW with elevated brain Ifn-γ was not observed in Ifngr1-/- or Stat1-/- mice. These results suggest that the observed microstructure changes involve the Ifn-gr1 and Stat1 signaling. Interestingly, increases in FW were observed in midbrain of Ifngr1-/- mice, which suggests alternative Ifn-γ signaling in midbrain. Although initial evidence is offered in relation to the sensitivity of the FW signal to neurodegenerative and/or inflammatory patterns specific to Ifn-γ, further research is needed to determine applicability and specificity across animal models of neuroinflammatory and degenerative disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Encefalite/diagnóstico por imagem , Encefalite/patologia , Interferon gama/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Animais , Anisotropia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encefalite/induzido quimicamente , Feminino , Interferon gama/administração & dosagem , Interferon gama/genética , Masculino , Camundongos Knockout , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Água/análise , Substância Branca/efeitos dos fármacos , Substância Branca/metabolismo
6.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31826916

RESUMO

The functional connectome reflects a network architecture enabling adaptive behavior that becomes vulnerable in advanced age. The cellular mechanisms that contribute to altered functional connectivity in old age, however, are not known. Here we used a multiscale imaging approach to link age-related changes in the functional connectome to altered expression of the activity-dependent immediate-early gene Arc as a function of training to multitask on a working memory (WM)/biconditional association task (BAT). Resting-state fMRI data were collected from young and aged rats longitudinally at three different timepoints during cognitive training. After imaging, rats performed the WM/BAT and were immediately sacrificed to examine expression levels of Arc during task performance. Aged behaviorally impaired, but not young, rats had a subnetwork of increased connectivity between the anterior cingulate cortex (ACC) and dorsal striatum (DS) that was correlated with the use of a suboptimal response-based strategy during cognitive testing. Moreover, while young rats had stable rich-club organization across three scanning sessions, the rich-club organization of old rats increased with cognitive training. In a control group of young and aged rats that were longitudinally scanned at similar time intervals, but without cognitive training, ACC-DS connectivity and rich-club organization did not change between scans in either age group. These findings suggest that aberrant large-scale functional connectivity in aged animals is associated with altered cellular activity patterns within individual brain regions.


Assuntos
Envelhecimento/fisiologia , Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Conectoma , Proteínas do Citoesqueleto/metabolismo , Giro do Cíngulo/fisiologia , Memória de Curto Prazo/fisiologia , Neostriado/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Prática Psicológica , Envelhecimento/metabolismo , Animais , Giro do Cíngulo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neostriado/diagnóstico por imagem , Neostriado/metabolismo , Ratos
7.
Neuroimage ; 202: 116138, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472250

RESUMO

Extracellular ß-amyloid (Aß) plaque deposits and inflammatory immune activation are thought to alter various aspects of tissue microstructure, such as extracellular free water, fractional anisotropy and diffusivity, as well as the density and geometric arrangement of axonal processes. Quantifying these microstructural changes in Alzheimer's disease and related neurodegenerative dementias could serve to monitor or predict disease course. In the present study we used high-field diffusion magnetic resonance imaging (dMRI) to investigate the effects of Aß and inflammatory interleukin-6 (IL6), alone or in combination, on in vivo tissue microstructure in the TgCRND8 mouse model of Alzheimer's-type Aß deposition. TgCRND8 and non-transgenic (nTg) mice expressing brain-targeted IL6 or enhanced glial fibrillary protein (EGFP controls) were scanned at 8 months of age using a 2-shell, 54-gradient direction dMRI sequence at 11.1 T. Images were processed using the diffusion tensor imaging (DTI) model or the neurite orientation dispersion and density imaging (NODDI) model. DTI and NODDI processing in TgCRND8 mice revealed a microstructure pattern in white matter (WM) and hippocampus consistent with radial and longitudinal diffusivity deficits along with an increase in density and geometric complexity of axonal and dendritic processes. This included reduced FA, mean, axial and radial diffusivity, and increased orientation dispersion (ODI) and intracellular volume fraction (ICVF) measured in WM and hippocampus. IL6 produced a 'protective-like' effect on WM FA in TgCRND8 mice, observed as an increased FA that counteracted a reduction in FA observed with endogenous Aß production and accumulation. In addition, we found that ICVF and ODI had an inverse relationship with the functional connectome clustering coefficient. The relationship between NODDI and graph theory metrics suggests that currently unknown microstructure alterations in WM and hippocampus are associated with diminished functional network organization in the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Hipocampo , Interleucina-6/metabolismo , Rede Nervosa , Neuritos/ultraestrutura , Substância Branca , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologia
8.
J Neurosci ; 39(17): 3249-3263, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30804095

RESUMO

Social recognition, the ability to recognize individuals that were previously encountered, requires complex integration of sensory inputs with previous experience. Here, we use a variety of approaches to discern how oxytocin-sensitive neurons in the PFC exert descending control over a circuit mediating social recognition in mice. Using male mice with Cre-recombinase directed to the oxytocin receptor gene (Oxtr), we revealed that oxytocin receptors (OXTRs) are expressed on glutamatergic neurons in the PFC, optogenetic stimulation of which elicited activation of neurons residing in several mesolimbic brain structures. Optogenetic stimulation of axons in the BLA arising from OXTR-expressing neurons in the PFC eliminated the ability to distinguish novel from familiar conspecifics, but remarkably, distinguishing between novel and familiar objects was unaffected. These results suggest that an oxytocin-sensitive PFC to BLA circuit is required for social recognition. The implication is that impaired social memory may manifest from dysregulation of this circuit.SIGNIFICANCE STATEMENT Using mice, we demonstrate that optogenetic activation of the neurons in the PFC that express the oxytocin receptor gene (Oxtr) impairs the ability to distinguish between novel and familiar conspecifics, but the ability to distinguish between novel and familiar objects remains intact. Subjects with autism spectrum disorders (ASDs) have difficulty identifying a person based on remembering facial features; however, ASDs and typical subjects perform similarly when remembering objects. In subjects with ASD, viewing the same face increases neural activity in the PFC, which may be analogous to the optogenetic excitation of oxytocin receptor (OXTR) expressing neurons in the PFC that impairs social recognition in mice. The implication is that overactivation of OXTR-expressing neurons in the PFC may contribute to ASD symptomology.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Ocitocina/metabolismo , Reconhecimento Psicológico/fisiologia , Comportamento Social , Animais , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Receptores de Ocitocina/genética
9.
Acta Physiol (Oxf) ; 226(2): e13256, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30656835

RESUMO

AIM: Butyrate is a major gut microbiota-derived metabolite. Reduced butyrate-producing bacteria has been reported in the spontaneously hypertensive rat (SHR), a model of hypertension characterized by dysfunctional autonomic nervous system and gut dysbiosis. Here, we demonstrate a potential mechanism for butyrate in blood pressure regulation. METHODS: High-performance liquid chromatography and liquid chromatography-mass spectrometry were performed to measure butyrate levels in feces and serum. Ussing chamber determined butyrate transport in colon ex vivo. Real-time PCR and immunohistochemistry evaluated expression of butyrate transporter, Slc5a8, in the colon. Mean arterial blood pressure was measured in catheterized anesthetized rats before and after a single butyrate intracerebroventricular injection. Activity of cardioregulatory brain regions was determined by functional magnetic resonance imaging to derive neural effects of butyrate. RESULTS: In the SHR, we demonstrated elevated butyrate levels in cecal content, but diminished butyrate levels in circulation, possibly due to reduced expression of Slc5a8 transporter in the colon. In addition, we observed lower expression levels of butyrate-sensing receptors in the hypothalamus of SHR, likely leading to the reduced effects of centrally administered butyrate on blood pressure in the SHR. Functional magnetic resonance imaging revealed reduced activation of cardioregulatory brain regions following central administration of butyrate in the SHR compared to control. CONCLUSION: We demonstrated a reduced availability of serum butyrate in the SHR, possibly due to diminished colonic absorption. Reduced expression of butyrate-sensing receptors in the SHR hypothalamus may explain the reduced central responsiveness to butyrate, indicating microbial butyrate may play a role in blood pressure regulation.


Assuntos
Pressão Sanguínea/fisiologia , Butiratos/sangue , Colo/metabolismo , Hipertensão/sangue , Absorção Intestinal , Animais , Pressão Arterial/fisiologia , Microbioma Gastrointestinal , Hipertensão/fisiopatologia , Ratos
10.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30073194

RESUMO

Brain imaging studies indicate that chronic cocaine users display altered functional connectivity between prefrontal cortical, thalamic, striatal, and limbic regions; however, the use of cross-sectional designs in these studies precludes measuring baseline brain activity prior to cocaine use. Animal studies can circumvent this limitation by comparing functional connectivity between baseline and various time points after chronic cocaine use. In the present study, adult male Long-Evans rats were trained to self-administer cocaine intravenously for 6 h sessions daily over 14 consecutive days. Two additional groups serving as controls underwent sucrose self-administration or exposure to the test chambers alone. Functional magnetic resonance imaging was conducted before self-administration and after 1 and 14 d of abstinence (1d and 14d Abs). After 1d Abs from cocaine, there were increased clustering coefficients in brain areas involved in reward seeking, learning, memory, and autonomic and affective processing, including amygdala, hypothalamus, striatum, hippocampus, and thalamus. Similar changes in clustering coefficient after 1d Abs from sucrose were evident in predominantly thalamic brain regions. Notably, there were no changes in strength of functional connectivity at 1 or 14 d after either cocaine or sucrose self-administration. The results suggest that cocaine and sucrose can change the arrangement of functional connectivity of brain regions involved in cognition and emotion, but that these changes dissipate across the early stages of abstinence. The study also emphasizes the importance of including baseline measures in longitudinal functional neuroimaging designs seeking to assess functional connectivity in the context of substance use.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/farmacologia , Corpo Estriado , Inibidores da Captação de Dopamina/farmacologia , Sistema Límbico , Neocórtex , Rede Nervosa , Sacarose/farmacologia , Edulcorantes/farmacologia , Animais , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/diagnóstico por imagem , Conectoma/métodos , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/administração & dosagem , Sistema Límbico/diagnóstico por imagem , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Neocórtex/diagnóstico por imagem , Neocórtex/efeitos dos fármacos , Neocórtex/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiopatologia , Ratos , Ratos Long-Evans , Autoadministração , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem
11.
Netw Neurosci ; 2(1): 106-124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29911667

RESUMO

In this study, we investigate the organization of the structural connectome in cognitively well participants with Parkinson's disease (PD-Well; n = 31) and a subgroup of participants with Parkinson's disease who have amnestic disturbances (PD-MI; n = 9). We explore correlations between connectome topology and vulnerable cognitive domains in Parkinson's disease relative to non-Parkinson's disease peers (control, n = 40). Diffusion-weighted MRI data and deterministic tractography were used to generate connectomes. Connectome topological indices under study included weighted indices of node strength, path length, clustering coefficient, and small-worldness. Relative to controls, node strength was reduced 4.99% for PD-Well (p = 0.041) and 13.2% for PD-MI (p = 0.004). We found bilateral differences in the node strength between PD-MI and controls for inferior parietal, caudal middle frontal, posterior cingulate, precentral, and rostral middle frontal. Correlations between connectome and cognitive domains of interest showed that topological indices of global connectivity negatively associated with working memory and displayed more and larger negative correlations with neuropsychological indices of memory in PD-MI than in PD-Well and controls. These findings suggest that indices of network connectivity are reduced in PD-MI relative to PD-Well and control participants.

12.
Neuropharmacology ; 137: 178-193, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29729891

RESUMO

Among cathinone drugs known as bath salts, methylenedioxypyrovalerone (MDPV) exerts its potent actions via the dopamine (DA) system, and at intoxicating doses may produce adverse behavioral effects. Previous work by our group suggests that prolonged alterations in correlated neural activity between cortical and striatal areas could underlie, at least in part, the adverse reactions to this bath salt drug. In the present study, we assessed the effect of acute MDPV administration on brain functional connectivity at 1 and 24 h in rats. Using graph theory metrics to assess in vivo brain functional network organization we observed that 24 h after MDPV administration there was an increased clustering coefficient, rich club index, and average path length. Increases in these metrics suggests that MDPV produces a prolonged pattern of correlated activity characterized by greater interactions between subsets of high degree nodes but a reduced interaction with regions outside this core subset. Further analysis revealed that the core set of nodes include prefrontal cortical, amygdala, hypothalamic, somatosensory and striatal areas. At the molecular level, MDPV downregulated the dopamine transporter (DAT) in striatum and produced a shift in its subcellular distribution, an effect likely to involve rapid internalization at the membrane. These new findings suggest that potent binding of MDPV to DAT may trigger internalization and a prolonged alteration in homeostatic regulation of DA and functional brain network reorganization. We propose that the observed MDPV-induced network reorganization and DAergic changes may contribute to previously reported adverse behavioral responses to MDPV.


Assuntos
Benzodioxóis/farmacologia , Encéfalo/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Drogas Ilícitas/farmacologia , Pirrolidinas/farmacologia , Recompensa , Comportamento Social , Animais , Benzodioxóis/efeitos adversos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/efeitos adversos , Relação Dose-Resposta a Droga , Drogas Ilícitas/efeitos adversos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Pirrolidinas/efeitos adversos , Ratos Long-Evans , Fatores de Tempo , Vocalização Animal/efeitos dos fármacos , Catinona Sintética
13.
J Affect Disord ; 229: 213-223, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29324369

RESUMO

INTRODUCTION: Continued development and refinement of resting state functional connectivity (RSFC) fMRI techniques in both animal and clinical studies has enhanced our comprehension of the adverse effects of stress on psychiatric health. The objective of the current study was to assess both maternal behavior and resting state functional connectivity (RSFC) changes in these animals when they were dams caring for their own young. It was hypothesized that ECSS exposed dams would express depressed maternal care and exhibit similar (same networks), yet different specific changes in RSFC (different individual nuclei) than reported when they were adult females. METHODS: We have developed an ethologically relevant transgenerational model of the role of chronic social stress (CSS) in the etiology of postpartum depression and anxiety. Initial fMRI investigation of the CSS model indicates that early life exposure to CSS (ECSS) induces long term changes in functional connectivity in adult nulliparous female F1 offspring. RESULTS: ECSS in F1 dams resulted in depressed maternal care specifically during early lactation, consistent with previous CSS studies, and induced changes in functional connectivity in regions associated with sensory processing, maternal and emotional responsiveness, memory, and the reward pathway, with robust changes in anterior cingulate circuits. LIMITATIONS: The sample sizes for the fMRI groups were low, limiting statistical power. CONCLUSION: This behavioral and functional neuroanatomical foundation can now be used to enhance our understanding of the neural etiology of early life stress associated disorders and test preventative measures and treatments for stress related disorders.


Assuntos
Ansiedade/fisiopatologia , Depressão Pós-Parto/fisiopatologia , Giro do Cíngulo/fisiopatologia , Comportamento Materno/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Depressão Pós-Parto/etiologia , Depressão Pós-Parto/psicologia , Feminino , Neuroimagem Funcional , Giro do Cíngulo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Comportamento Materno/psicologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/psicologia
14.
Brain Imaging Behav ; 12(5): 1318-1331, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29181695

RESUMO

Individuals with anxiety/depression often have exaggerated cardiovascular responses to stressful stimuli and a comorbidity with hypertension. Alternatively, individuals with hypertension can be more anxious. In the present study cardiovascular changes were evaluated during behavioral testing of anxious behavior on the elevated plus maze (EPM) in the spontaneously hypertensive rat (SHR), a rodent model of neurogenic hypertension, and compared to the response of the more anxious, but normotensive, Wistar-Kyoto rat (WKY). Manganese-enhanced magnetic resonance imaging (MEMRI) was used to identify regional differences in baseline brain activity. Parallel to indicators of elevated behavioral anxiety on the EPM, WKYs had a greater increase in blood pressure but not heart rate when compared to the SHR while on the EPM. Associated with differences in anxiety-related behavior and autonomic responses, we observed increased baseline activity in the amygdala, central gray, habenula and interpeduncular nucleus with MEMRI of the WKY compared to the SHR. Conversely, elevated baseline brain activity was found in regions associated with blood pressure control and system arousal, including the hypothalamus, locus coeruleus and pedunculopontine tegmental nucleus, in the SHR vs WKY, in-line with increased resting blood pressure and increased mobility in this strain. Lastly, reduced activity in hippocampal regions was identified in the SHR compared to the WKY and may be associated with cognitive impairment previously reported in the SHR. Thus, autonomic reactivity may be a true measure of stress in rodent models of anxiety and MEMRI presents a powerful technique to uncover novel brain mechanisms of blood pressure control.


Assuntos
Ansiedade/fisiopatologia , Encéfalo/fisiopatologia , Hipertensão/fisiopatologia , Hipertensão/psicologia , Imageamento por Ressonância Magnética , Animais , Ansiedade/diagnóstico por imagem , Pressão Sanguínea/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Meios de Contraste , Frequência Cardíaca/fisiologia , Hipertensão/diagnóstico por imagem , Masculino , Manganês , Aprendizagem em Labirinto/fisiologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Especificidade da Espécie , Estresse Psicológico/diagnóstico por imagem , Estresse Psicológico/fisiopatologia
15.
Front Physiol ; 8: 592, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912720

RESUMO

Activation of autonomic neural pathways by chronic hypertensive stimuli plays a significant role in pathogenesis of hypertension. Here, we proposed that even a single acute hypertensive stimulus will activate neural and immune pathways that may be important in initiation of memory imprinting seen in chronic hypertension. We investigated the effects of acute angiotensin II (Ang II) administration on blood pressure, neural activation in cardioregulatory brain regions, and central and systemic immune responses, at 1 and 24 h post-injection. Administration of a single bolus intra-peritoneal (I.P.) injection of Ang II (36 µg/kg) resulted in a transient increase in the mean arterial pressure (MAP) (by 22 ± 4 mmHg vs saline), which returned to baseline within 1 h. However, in contrast to MAP, neuronal activity, as measured by manganese-enhanced magnetic resonance (MEMRI), remained elevated in several cardioregulatory brain regions over 24 h. The increase was predominant in autonomic regions, such as the subfornical organ (SFO; ~20%), paraventricular nucleus of the hypothalamus (PVN; ~20%) and rostral ventrolateral medulla (RVLM; ~900%), among others. Similarly, systemic and central immune responses, as evidenced by circulating levels of CD4+/IL17+ T cells, and increased IL17 levels and activation of microglia in the PVN, respectively, remained elevated at 24 h following Ang II challenge. Elevated Fos expression in the PVN was also present at 24 h (by 73 ± 11%) following Ang II compared to control saline injections, confirming persistent activation of PVN. Thus, even a single Ang II hypertensive stimulus will initiate changes in neuronal and immune cells that play a role in the developing hypertensive phenotype.

16.
Neurobiol Dis ; 106: 124-132, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28673740

RESUMO

Multiple lines of evidence implicate striatal dysfunction in the pathogenesis of dystonia, including in DYT1, a common inherited form of the disease. The impact of striatal dysfunction on connected motor circuits and their interaction with other brain regions is poorly understood. Conditional knock-out (cKO) of the DYT1 protein torsinA from forebrain cholinergic and GABAergic neurons creates a symptomatic model that recapitulates many characteristics of DYT1 dystonia, including the developmental onset of overt twisting movements that are responsive to antimuscarinic drugs. We performed diffusion MRI and resting-state functional MRI on cKO mice of either sex to define abnormalities of diffusivity and functional connectivity in cortical, subcortical, and cerebellar networks. The striatum was the only region to exhibit an abnormality of diffusivity, indicating a selective microstructural deficit in cKO mice. The striatum of cKO mice exhibited widespread increases in functional connectivity with somatosensory cortex, thalamus, vermis, cerebellar cortex and nuclei, and brainstem. The current study provides the first in vivo support that direct pathological insult to forebrain torsinA in a symptomatic mouse model of DYT1 dystonia can engage genetically normal hindbrain regions into an aberrant connectivity network. These findings have important implications for the assignment of a causative region in CNS disease.


Assuntos
Corpo Estriado/diagnóstico por imagem , Distonia Muscular Deformante/diagnóstico por imagem , Distonia Muscular Deformante/metabolismo , Imageamento por Ressonância Magnética , Chaperonas Moleculares/metabolismo , Prosencéfalo/metabolismo , Animais , Água Corporal/diagnóstico por imagem , Mapeamento Encefálico , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Distonia Muscular Deformante/patologia , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Masculino , Camundongos Transgênicos , Chaperonas Moleculares/genética , Imagem Multimodal , Vias Neurais/diagnóstico por imagem , Vias Neurais/metabolismo , Vias Neurais/patologia , Prosencéfalo/diagnóstico por imagem , Prosencéfalo/patologia , Descanso
17.
J Neurosci ; 37(25): 5996-6006, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28536273

RESUMO

Mutations in human ZIP14 have been linked to symptoms of the early onset of Parkinsonism and Dystonia. This phenotype is likely related to excess manganese accumulation in the CNS. The metal transporter ZIP14 (SLC39A14) is viewed primarily as a zinc transporter that is inducible via proinflammatory stimuli. In vitro evidence shows that ZIP14 can also transport manganese. To examine a role for ZIP14 in manganese homeostasis, we used Zip14 knock-out (KO) male and female mice to conduct comparative metabolic, imaging, and functional studies. Manganese accumulation was fourfold to fivefold higher in brains of Zip14 KO mice compared with young adult wild-type mice. There was less accumulation of subcutaneously administered 54Mn in the liver, gallbladder, and gastrointestinal tract of the KO mice, suggesting that manganese elimination is impaired with Zip14 ablation. Impaired elimination creates the opportunity for atypical manganese accumulation in tissues, including the brain. The intensity of MR images from brains of the Zip14 KO mice is indicative of major manganese accumulation. In agreement with excessive manganese accumulation was the impaired motor function observed in the Zip14 KO mice. These results also demonstrate that ZIP14 is not essential for manganese uptake by the brain. Nevertheless, the upregulation of signatures of brain injury observed in the Zip14 KO mice demonstrates that normal ZIP14 function is an essential factor required to prevent manganese-linked neurodegeneration.SIGNIFICANCE STATEMENT Manganese is an essential micronutrient. When acquired in excess, manganese accumulates in tissues of the CNS and is associated with neurodegenerative disease, particularly Parkinson-like syndrome and dystonia. Some members of the ZIP metal transporter family transport manganese. Using mutant mice deficient in the ZIP14 metal transporter, we have discovered that ZIP14 is essential for manganese elimination via the gastrointestinal tract, and a lack of ZIP14 results in manganese accumulation in critical tissues such as the brain, as measured by MRI, and produces signatures of brain injury and impaired motor function. Humans with altered ZIP14 function would lack this gatekeeper function of ZIP14 and therefore would be prone to manganese-related neurological diseases.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Intoxicação por Manganês/genética , Intoxicação por Manganês/metabolismo , Manganês/metabolismo , Atividade Motora/genética , Animais , Química Encefálica/genética , Feminino , Motilidade Gastrointestinal/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Tecidual , Zinco/metabolismo , Zinco/farmacologia
18.
PLoS One ; 12(4): e0174774, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445527

RESUMO

Dopaminergic reward dysfunction in addictive behaviors is well supported in the literature. There is evidence that alterations in synchronous neural activity between brain regions subserving reward and various cognitive functions may significantly contribute to substance-related disorders. This study presents the first evidence showing that a pro-dopaminergic nutraceutical (KB220Z) significantly enhances, above placebo, functional connectivity between reward and cognitive brain areas in the rat. These include the nucleus accumbens, anterior cingulate gyrus, anterior thalamic nuclei, hippocampus, prelimbic and infralimbic loci. Significant functional connectivity, increased brain connectivity volume recruitment (potentially neuroplasticity), and dopaminergic functionality were found across the brain reward circuitry. Increases in functional connectivity were specific to these regions and were not broadly distributed across the brain. While these initial findings have been observed in drug naïve rodents, this robust, yet selective response implies clinical relevance for addicted individuals at risk for relapse, who show reductions in functional connectivity after protracted withdrawal. Future studies will evaluate KB220Z in animal models of addiction.


Assuntos
Encéfalo/efeitos dos fármacos , Catecolaminas/farmacologia , Dopaminérgicos/farmacologia , Monoaminoxidase/farmacologia , Neprilisina/farmacologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Mapeamento Encefálico , Cognição/efeitos dos fármacos , Hipocampo/anatomia & histologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Imageamento por Ressonância Magnética , Masculino , Núcleo Accumbens/anatomia & histologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Efeito Placebo , Ratos , Ratos Long-Evans , Núcleos Talâmicos/anatomia & histologia , Núcleos Talâmicos/efeitos dos fármacos , Núcleos Talâmicos/fisiologia
19.
Surg Radiol Anat ; 39(10): 1149-1159, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28286911

RESUMO

PURPOSE: The hippocampus has a critical role in many common disease processes. Currently, routine 3 Tesla structural MRI is a mainstay of clinical diagnosis. The goal of our study is to evaluate the normal variability in size and/or conspicuity of the hippocampal subcomponents in routine clinical 3 Tesla high-resolution T2-weighted images to provide a basis for better defining pathological derangements. Additionally, we utilize diffusion data acquired from a 17.6 Tesla MRI of the hippocampus as a benchmark to better illustrate these subcomponents. METHODS: The hippocampus was retrospectively assessed on 104 clinically normal patients undergoing coronal T2-weighted imaging. The conspicuity of the majority of hippocampal subcomponents was assessed in each portion of the hippocampus. Additionally, easily applicable cross-sectional measurements and signal intensities were obtained to evaluate the range of normal, as well as inter- and intra-subject variability. RESULTS: The normal range of cross-sectional measurements of the hippocampal subcomponents was calculated. There was minimal side-to-side variability in cross-sectional measurements of hippocampal subcomponents (< 5%) with the exception of the subiculum (R>L by 8.3%) and the CA4/DG (R>L by 5.8%). The internal architecture showed high variability in visibility of subcomponents between different segments of the hippocampus. CONCLUSIONS: Confident clinical assessment of the hippocampus requires a thorough knowledge of hippocampal size and signal, but also the internal architecture expected to be seen. The data provided in this study will provide the reader with vital information necessary for distinguishing a normal from abnormal exam.


Assuntos
Hipocampo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Estudos Retrospectivos
20.
Stem Cells ; 35(5): 1303-1315, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299842

RESUMO

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.


Assuntos
Sistema Nervoso Central/citologia , Eletroacupuntura , Células-Tronco Mesenquimais/citologia , Tendão do Calcâneo/patologia , Pontos de Acupuntura , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Antígenos CD/metabolismo , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Humanos , Hiperalgesia/terapia , Hipotálamo/citologia , Interleucina-10/sangue , Macrófagos/citologia , Camundongos , Rede Nervosa/fisiologia , Ratos , Ruptura , Células Receptoras Sensoriais/metabolismo , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...