Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473818

RESUMO

Polyoxotungstate nanoclusters have recently emerged as promising contrast agents for computed tomography (CT). In order to evaluate their clinical potential, in this study, we evaluated the in vitro CT imaging properties, potential toxic effects in vivo, and tissue distribution of monolacunary Wells-Dawson polyoxometalate, α2-K10P2W17O61.20H2O (mono-WD POM). Mono-WD POM showed superior X-ray attenuation compared to other tungsten-containing nanoclusters (its parent WD-POM and Keggin POM) and the standard iodine-based contrast agent (iohexol). The calculated X-ray attenuation linear slope for mono-WD POM was significantly higher compared to parent WD-POM, Keggin POM, and iohexol (5.97 ± 0.14 vs. 4.84 ± 0.05, 4.55 ± 0.16, and 4.30 ± 0.09, respectively). Acute oral (maximum-administered dose (MAD) = 960 mg/kg) and intravenous administration (1/10, 1/5, and 1/3 MAD) of mono-WD POM did not induce unexpected changes in rats' general habits or mortality. Results of blood gas analysis, CO-oximetry status, and the levels of electrolytes, glucose, lactate, creatinine, and BUN demonstrated a dose-dependent tendency 14 days after intravenous administration of mono-WD POM. The most significant differences compared to the control were observed for 1/3 MAD, being approximately seventy times higher than the typically used dose (0.015 mmol W/kg) of tungsten-based contrast agents. The highest tungsten deposition was found in the kidney (1/3 MAD-0.67 ± 0.12; 1/5 MAD-0.59 ± 0.07; 1/10 MAD-0.54 ± 0.05), which corresponded to detected morphological irregularities, electrolyte imbalance, and increased BUN levels.


Assuntos
Ânions , Meios de Contraste , Iohexol , Polieletrólitos , Ratos , Animais , Distribuição Tecidual , Tungstênio , Tomografia Computadorizada por Raios X
2.
Sci Rep ; 13(1): 9140, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277558

RESUMO

In this study, we demonstrate for the first time, that a discrete metal-oxo cluster α-/ß-K6P2W18O62 (WD-POM) exhibits superior performance as a computed tomography (CT) contrast agent, in comparison to the standard contrast agent iohexol. A toxicity evaluation of WD-POM was performed according to standard toxicological protocols using Wistar albino rats. The maximum tolerable dose (MTD) of 2000 mg/kg was initially determined after oral WD-POM application. The acute intravenous toxicity of single WD-POM doses (1/3, 1/5, and 1/10 MTD), which are at least fifty times higher than the typically used dose (0.015 mmol W kg-1) of tungsten-based contrast agents, was evaluated for 14 days. The results of arterial blood gas analysis, CO-oximetry status, electrolyte and lactate levels for 1/10 MTD group (80% survival rate) indicated the mixed respiratory and metabolic acidosis. The highest deposition of WD-POM (0.6 ppm tungsten) was found in the kidney, followed by liver (0.15 ppm tungsten), for which the histological analysis revealed morphological irregularities, although the renal function parameters (creatinine and BUN levels) were within the physiological range. This study is the first and important step in evaluating side effects of polyoxometalate nanoclusters, which in recent years have shown a large potential as therapeutics and contrast agents.


Assuntos
Meios de Contraste , Tungstênio , Ratos , Animais , Meios de Contraste/toxicidade , Tungstênio/toxicidade , Tomografia Computadorizada por Raios X/métodos , Rim/diagnóstico por imagem , Iohexol/toxicidade , Ratos Wistar
3.
Sleep Med ; 105: 14-20, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36940515

RESUMO

BACKGROUND: Thyroid dysfunctions as well as sleep abnormalities are usually followed by neurological, psychiatric and/or behavioral disorders. On the other hand, changes in the brain adenosine triphosphatases (ATPases) and acetylcholinesterase (AChE) activities show significant importance in pathogenetic pathways in the evolution of numerous neuropsychiatric diseases. METHODS: This study aimed to evaluate the in vivo simultaneous effects of hypothyroidism and paradoxical sleep deprivation for 72 h on synaptosomalATPases and AChE activities of whole rat brains. In order to induce hypothyroidism, 6-n-propyl-2-thiouracil was administrated in drinking water during 21 days. The modified multiple platform method was used to induce paradoxical sleep deprivation. The AChE and ATPases activities were measured using spectrophotometric methods. RESULTS: Hypothyroidism significantly increased the activity of Na+/K+-ATPase compared to other groups, while at the same time significantly decreased AChE activity compared to the CT and SD groups. Paradoxical sleep deprivation significantly increased AChE activity compared to other groups. The simultaneous effect of hypothyroidism and sleep deprivation reduced the activity of all three enzymes (for Na+/K+-ATPase between HT/SD and HT group p < 0.0001, SD group p < 0.001,CT group p = 0.013; for ecto-ATPases between HT/SD and HT group p = 0.0034, SD group p = 0.0001, CT group p = 0.0007; for AChE between HT/SD and HT group p < 0.05, SD group p < 0.0001, CT group p < 0.0001). CONCLUSIONS: The effect of simultaneous existence of hypothyroidism and paradoxical sleep deprivation reduces the activity of the Na+/K+-ATPase, ecto-ATPases, and AChE, what is different from individual effect of hypothyroidism and paradoxical sleep deprivation itself. This knowledge could help in the choice of appropriate therapy in such condition.


Assuntos
Acetilcolinesterase , Hipotireoidismo , Ratos , Animais , Acetilcolinesterase/metabolismo , Privação do Sono/complicações , Privação do Sono/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ratos Wistar , Sono REM , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Encéfalo/metabolismo
4.
J Biol Inorg Chem ; 26(8): 957-971, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34549367

RESUMO

Polyoxo-noble-metalates (PONMs), a class of molecular noble metal-oxo nanoclusters that combine features of both polyoxometalates and noble metals, are a promising platform for the development of next-generation antitumor metallodrugs. This study aimed to evaluate the antitumor potential against human neuroblastoma cells (SH-SY5Y), as well as toxicity towards healthy human peripheral blood cells (HPBCs), of five polyoxopalladates(II): (Na8[Pd13As8O34(OH)6]·42H2O (Pd13), Na4[SrPd12O6(OH)3(PhAsO3)6(OAc)3]·2NaOAc·32H2O (SrPd12), Na6[Pd13(AsPh)8O32]·23H2O (Pd13L), Na12[SnO8Pd12(PO4)8]·43H2O (SnPd12), and Na12[PbO8Pd12(PO4)8]·38H2O (PbPd12)), as the largest subset of PONMs. A pure inorganic, Pd13, was found as the most potent and selective antineuroblastoma agent with IC50 values (µM) of 7.2 ± 2.2 and 4.4 ± 1.2 for 24 and 48 h treatment, respectively, even lower than cisplatin (28.4 ± 7.4 and 11.6 ± 0.8). The obtained IC50 values (µM) for 24/48 h treatment with SrPd12 and Pd13L were 75.8 ± 6.7/76.7 ± 22.9 and 63.8 ± 3.6/21.4 ± 10.8, respectively, whereas SnPd12 and PbPd12 did not remarkably affect the SH-SY5Y viability (IC50 > > 100 µM). Pd13 caused depolarisation of inner mitochondrial membrane prior to superoxide ion hyperproduction, followed by caspase activation, DNA fragmentation and cell cycle arrest, all hallmarks of apoptotic cell death, and accompanied by an increase in acidic vesicles content, suggestive of autophagy induction. Importantly, Pd13 demonstrated the antitumor effect at concentrations not cytogenotoxic for normal HPBCs. On the contrary, SrPd12 and Pd13L at concentrations ≥ 1/3 IC50 (24 h) decreased HPBC viability and increased % tail DNA up to 42% and 3.05 times, respectively, related to control. SnPd12 and PbPd12, previously confirmed promising antileukemic agents, did not exhibit cytogenotoxicity to HPBCs, and thus could be regarded as tumor cell specific and selective drug candidates.


Assuntos
Antineoplásicos , Neuroblastoma , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Cisplatino/farmacologia , Humanos , Neuroblastoma/tratamento farmacológico
5.
Eur J Pharm Sci ; 151: 105376, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492460

RESUMO

Acetylcholinesterase (AChE) inhibitors are important in the treatment of neurodegenerative diseases. Two inhibitors, 12-tungstosilicic acid (WSiA) and 12-tungstophosphoric acid (WPA), which have polyoxometalate (POM) type structure, have been shown to inhibit AChE activity in nM concentration. Circular dichroism and tryptophan fluorescence spectroscopy demonstrated that the AChE inhibition was not accompanied by significant changes in the secondary structure of the enzyme. The molecular docking approach has revealed a new allosteric binding site, termed ß-allosteric site (ß-AS), which is considered responsible for the inhibition of AChE by POMs. To the best of our knowledge, this is the first study reporting a new allosteric site that is considered responsible for AChE inhibition by voluminous and negatively charged molecules such as POMs. The selected POMs were further subjected to genotoxicity testing using human peripheral blood cells as a model system. It was shown that WSiA and WPA induced a mild cytostatic but not genotoxic effects in human lymphocytes, which indicates their potential to be used as medicinal drugs. The identification of non-toxic compounds capable of binding to an allosteric site that so far has not been considered responsible for enzyme inhibition could be fundamental for the development of new drug design strategies and the discovery of more efficient AChE modulators.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Sítio Alostérico , Sítios de Ligação , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular
6.
RSC Adv ; 10(5): 2846-2855, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35496114

RESUMO

In this study, the in vivo hypoglycemic effect of a donut-shaped polyanion salt (NH4)14[Na@P5W30O110]·31H2O {NaP5W30} and its Ag-containing derivative K14[Ag@P5W30O110]·22H2O·6KCl {AgP5W30}, as well as their hepatotoxicity and nephrotoxicity, was evaluated. In the screening hypoglycemic study, Wistar albino rats with streptozotocin induced diabetes were treated intraperitoneally with three single doses (5, 10, and 20 mg per kg per b.w.) of both investigated polyoxotungstates. The blood glucose levels, measured before and after 2, 4 and 6 h polyoxotungstate application, showed that both studied compounds induced the most pronounced and time dependent glucose lowering effects at the doses of 20 mg kg-1. Thus, daily doses of 20 mg kg-1 were administered to Wistar albino rats orally for 14 days in further toxicity examinations. The serum glucose concentration and biochemical parameters of kidney and liver function, as well as a histopathological analysis of kidney and liver tissues were evaluated 14 days after the polyoxotungstate administration. Both investigated compounds did not induce statistically significant alterations of the serum glucose and uric acid concentrations, as well as some of the liver function markers (serum alanine and aspartate aminotransferases, and alkaline phosphatase activities). However, the significant decrease in serum total protein and albumin concentrations and the increase in biochemical parameters of renal function - serum urea (up to 63.1%) and creatinine concentrations (up to 23.3%) were observed for both polyoxotungstates. In addition, the detected biochemical changes were in accordance with kidney and liver histhopathological analysis. Accordingly, the hepatotoxic and nephrotoxic effects of these potential antidiabetic polyoxotungstates could be considered as mild.

7.
Curr Med Chem ; 27(3): 362-379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31453779

RESUMO

BACKGROUND: Polyoxometalates (POMs) are negatively charged metal-oxo clusters of early transition metal ions in high oxidation states (e.g., WVI, MoVI, VV). POMs are of interest in the fields of catalysis, electronics, magnetic materials and nanotechnology. Moreover, POMs were shown to exhibit biological activities in vitro and in vivo, such as antitumor, antimicrobial, and antidiabetic. METHODS: The literature search for this peer-reviewed article was performed using PubMed and Scopus databases with the help of appropriate keywords. RESULTS: This review gives a comprehensive overview of recent studies regarding biological activities of polyoxometalates, and their biomedical applications as promising anti-viral, anti-bacterial, anti-tumor, and anti-diabetic agents. Additionally, their putative mechanisms of action and molecular targets are particularly considered. CONCLUSION: Although a wide range of biological activities of Polyoxometalates (POMs) has been reported, they are to the best of our knowledge not close to a clinical trial or a final application in the treatment of diabetes or infectious and malignant diseases. Accordingly, further studies should be directed towards determining the mechanism of POM biological actions, which would enable fine-tuning at the molecular level, and consequently efficient action towards biological targets and as low toxicity as possible. Furthermore, biomedical studies should be performed on solutionstable POMs employing physiological conditions and concentrations.


Assuntos
Compostos de Tungstênio/química , Catálise , Metais , Elementos de Transição
8.
Inorg Chem ; 58(17): 11294-11299, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31411862

RESUMO

The first two examples of polyoxopalladates(II) (POPs) containing tetravalent metal ion guests, [MO8Pd12(PO4)8]12- (M = SnIV, PbIV), have been prepared and structurally characterized in the solid state, solution, and gas phase. The interactions of the metal ion guests and the palladium-oxo shell were studied by theoretical calculations. The POPs were shown to possess anticancer activity by causing oxidative stress inducing caspase activation and consecutive apoptosis of leukemic cells.


Assuntos
Antineoplásicos/farmacologia , Metais Pesados/química , Compostos Organometálicos/farmacologia , Polímeros/química , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Íons/química , Modelos Moleculares , Compostos Organometálicos/síntese química , Compostos Organometálicos/química
9.
Int J Radiat Biol ; 94(11): 1062-1071, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30238840

RESUMO

PURPOSE: It is considered that exposure to static magnetic fields (SMF) may have both detrimental and therapeutic effect, but the mechanism of SMF influence on the living organisms is not well understood. Since the adenosine triphosphatases (ATPases) and acetylcholinesterase (AChE) are involved in both physiological and pathological processes, the modulation of Na+/K+-ATPase, ecto-ATPases and AChE activities, as well as oxidative stress responses were followed in synaptosomes isolated from rats after chronic exposure toward differently oriented SMF. MATERIAL AND METHODS: Wistar albino rats were randomly divided into three experimental groups (six animals per group): Up and Down group - exposed to upward and downward oriented SMF, respectively, and Control group. After 50 days, the rats were sacrificed, and synaptosomes were isolated from the whole rat brain and used for testing the enzyme activities and oxidative stress parameters. RESULTS: Chronic exposure to 1 mT SMF significantly increased ATPases, AChE activities, and malondialdehyde (MDA) level in both exposed groups, compared to control values. The significant decrease in synaptosomal catalase activity (1.48 ± 0.17 U/mg protein) induced by exposure to the downward oriented field, compared to those obtained for Control group (2.60 ± 0.29 U/mg protein), and Up group (2.72 ± 0.21 U/mg protein). CONCLUSIONS: It could be concluded that chronic exposure to differently oriented SMF increases ATPases and AChE activities in rat synaptosomes. Since brain ATPases and AChE have important roles in the pathogenesis of several neurological diseases, SMF influence on the activity of these enzymes may have potential therapeutic importance.


Assuntos
Acetilcolinesterase/metabolismo , Adenosina Trifosfatases/metabolismo , Campos Magnéticos/efeitos adversos , Sinaptossomos/enzimologia , Animais , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Sinaptossomos/metabolismo , Fatores de Tempo
10.
Curr Med Chem ; 25(3): 324-335, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28595554

RESUMO

BACKGROUND: Sulphur is an abundant element in biological systems, which plays an important role in processes essential for life as a constituent of proteins, vitamins and other crucial biomolecules. The major source of sulphur for humans is plants being able to use inorganic sulphur in the purpose of sulphur-containing amino acids synthesis. Sulphur-containing amino acids include methionine, cysteine, homocysteine, and taurine. Methionine and cysteine are classified as proteinogenic, canonic amino acids incorporated in protein structure. Sulphur amino acids are involved in the synthesis of intracellular antioxidants such as glutathione and N-acetyl cysteine. Moreover, naturally occurring sulphur-containing ligands are effective and safe detoxifying agents, often used in order to prevent toxic metal ions effects and their accumulation in human body. METHODS: Literature search for peer-reviewed articles was performed using PubMed and Scopus databases, and utilizing appropriate keywords. RESULTS: This review is focused on sulphur-containing amino acids - methionine, cysteine, taurine, and their derivatives - glutathione and N-acetylcysteine, and their defense effects as antioxidant agents against free radicals. Additionally, the protective effects of sulphur-containing ligands against the toxic effects of heavy and transition metal ions, and their reactivation role towards the enzyme inhibition are described. CONCLUSION: Sulphur-containing amino acids represent a powerful part of cell antioxidant system. Thus, they are essential in the maintenance of normal cellular functions and health. In addition to their worthy antioxidant action, sulphur-containing amino acids may offer a chelating site for heavy metals. Accordingly, they may be supplemented during chelating therapy, providing beneficial effects in eliminating toxic metals.


Assuntos
Aminoácidos/farmacologia , Antioxidantes/farmacologia , Radicais Livres/antagonistas & inibidores , Metais Pesados/antagonistas & inibidores , Enxofre/farmacologia , Animais , Humanos
11.
Toxicol Appl Pharmacol ; 333: 68-75, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830837

RESUMO

A toxicity evaluation of two Keggin-type heteropolytungstates, K7[Ti2PW10O40]·6H2O and K6H[SiV3W9O40]·3H2O, with different inhibitory potencies toward acetylcholinesterase activity (IC50 values of 1.04×10-6 and 4.80×10-4mol/L, respectively) was performed. Wistar albino rats were orally treated with single doses (5 and 50mg/kg) of both investigated compounds. The biochemical parameters of renal (serum urea and creatinine) and liver function (direct and total bilirubin, alanine transaminase, and aspartate aminotransferase) were determined after 24h and 14days. A histopathological analysis of liver tissue was carried out 14days after the polyoxotungstate administration. Both applied doses of the investigated compounds did not induce statistically significant alterations of the renal function markers. However, the polyoxotungstate treatment caused an increase in the activities of serum alanine transaminase and aspartate aminotransferase in a time- and concentration-dependent manner, although statistically significant changes in bilirubin concentrations were not observed. Furthermore, the detected hepatotoxic effect was confirmed by histhopathological analysis that suggested some reversible liver tissue damage two weeks after the treatment, especially in the case of K6H[SiV3W9O40]·3H2O. Accordingly, the toxicity of these two polyoxotungstates with anti-acetylcholinesterase effect cannot be considered as a severe one, but their potential clinical application would require a more complex toxicological study.


Assuntos
Inibidores da Colinesterase/toxicidade , Polímeros/toxicidade , Compostos de Tungstênio/toxicidade , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Comportamento Animal/efeitos dos fármacos , Creatinina/sangue , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Ratos Wistar , Ureia/sangue
12.
J Biol Inorg Chem ; 22(6): 819-832, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28432453

RESUMO

The in vitro effects of oxo-bridged binuclear gold(III) complexes, i.e., [(bipy2Me)2Au2(µ-O)2][PF6]2 (Auoxo6), Au2[(bipydmb-H)2(µ-O)][PF6] (Au2bipyC) and [Au2(phen2Me)2(µ-O)2](PF6)2 (Au2phen) on Na/K-ATPase, purified from the porcine cerebral cortex, were investigated. All three studied gold complexes inhibited the enzyme activity in a concentration-dependent manner achieving IC50 values in the low micromolar range. Kinetic analysis suggested an uncompetitive mode of inhibition for Auoxo6 and Au2bipyC, and a mixed type one for Au2phen. Docking studies indicated that the inhibitory actions of all tested complexes are related to E2-P enzyme conformation binding to ion channel and intracellular part between N and P sub-domain. In addition, Au2phen was able to inhibit the enzyme by interacting with its extracellular part as well. Toxic effects of the gold(III) complexes were evaluated in vitro by following lactate dehydrogenase activity in rat brain synaptosomes and incidence of micronuclei and cytokinesis-block proliferation index in cultivated human lymphocytes. All investigated complexes turned out to induce cytogenetic damage consisting of a significant decrease in cell proliferation and an increase in micronuclei in a dose-dependent manner. On the other hand, lactate dehydrogenase activity, an indicator of membrane integrity/viability, was not affected by Auoxo6 and Au2bipyC, while Au2phen slightly modified its activity.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ouro/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Adulto , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Masculino , Simulação de Acoplamento Molecular , Compostos Organometálicos/efeitos adversos , Compostos Organometálicos/metabolismo , Conformação Proteica , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
13.
J Inorg Biochem ; 161: 27-36, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27235271

RESUMO

In vitro influence of five synthesized functionalized hexavanadates (V6) on commercial porcine cerebral cortex Na(+)/K(+)-ATPase activity has been studied. Dose dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated half maximal inhibitory concentration IC50 values, in mol/L, for Na(+)/K(+)-ATPase were 7.6×10(-5), 1.8×10(-5), 2.9×10(-5), 5.5×10(-5) for functionalized hexavanadates (V6) with tetrabutylammonium (TBA) [V6-CH3][TBA]2, [V6-NO2][TBA]2, [V6-OH][TBA]2 and [V6-C3][TBA]2 respectively. [V6-OH][Na]2 inhibited Na(+)/K(+)-ATPase activity up to 30% at maximal investigated concentration 1×10(-3)mol/L. This reactivity has been interpreted using a study of the non-covalent interactions of functionalized hexavanadate hybrids through Cambridge Structural Database (CSD) analysis. Bibliographic searching has led to 18 different structures and 99 contacts. We have observed that C-H⋯O contacts consolidate the structures. We have also performed density functional theory (DFT) calculations and have determined electrostatic potential values at the molecular surface on a series of functionalized V6. These results enlightened their chemical reactivity and their potential biological applications such as the inhibition of the ATPase.


Assuntos
Inibidores Enzimáticos , ATPase Trocadora de Sódio-Potássio , Vanadatos , Animais , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Suínos , Vanadatos/síntese química , Vanadatos/química
14.
Toxicol Lett ; 233(1): 29-37, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25562544

RESUMO

Although primary toxic action of organophosphorous insecticides is associated with acetylcholinesterase inhibition, later studies suggest that oxidative stress may be responsible for induced organophosphates toxicity. These studies mostly include thio forms, while the effects of their metabolites/degradation products have been less investigated. Therefore, this paper studies the toxic effects of diazinon degradation products, diazoxon and 2-isopropyl-6-methyl-4-pyrimidinol, and compares them with the toxic potential of the parent compound. The toxicity induced by various concentrations of the investigated compounds was in vitro evaluated by the activities of acetylcholinesterase, ATPases, antioxidant defense enzymes and lactate dehydrogenase, and malondialdehyde level in rat brain synaptosomes. Diazinon inhibited acetylcholinesterase and Na(+)/K(+)-ATPase in dose-dependent manner, while the inhibition of ecto-ATPase activity was less than 15% at all investigated concentrations. It did not demonstrate noteworthy prooxidative properties causing increase (up to 10%) in antioxidant enzymes activity and malondialdehyde level, as a marker of lipid peroxidation. Diazinon oxidation product, diazoxon was found as the most toxic investigated compound. Beside the expected strong inhibitory effect on acetylcholinesterase, it induced dose-dependent and almost complete inhibition of Na(+)/K(+)-ATPase and ecto-ATPase at the highest investigated concentration (0.1mM). Increasing diazoxon concentrations activated catalase (up to 30%), superoxide dismutase (up to 50%), glutathione peroxidase (up to 30%), and significantly increased malondialdehyde level (up to 50%). The investigated hydrolysis product of diazinon, 2-isopropyl-6-methyl-4-pyrimidinol did not remarkably alter the activities of acetylcholinesterase, Na(+)/K(+)-ATPase, catalase, glutathione peroxidase and lipid peroxidation level (up to about 10%). Although this diazinon metabolite has been known as non toxic, it induced superoxide dismutase stimulation up to 30%. Finally, even high concentrations of both diazinon and its metabolites did noticeably affect lactate dehydrogenase activity as a marker of synaptosomal integrity. The changes in investigated biochemical parameters in rat brain synaptosomes could serve as indicators of toxicity due to the exposure to thio organophosphates and/or their break-down products.


Assuntos
Encéfalo/efeitos dos fármacos , Diazinon/toxicidade , Síndromes Neurotóxicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Animais , Encéfalo/metabolismo , Catalase/metabolismo , Inibidores da Colinesterase/toxicidade , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Inseticidas/toxicidade , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Compostos Organofosforados/toxicidade , Pirimidinas/toxicidade , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/metabolismo , Sinaptossomos/metabolismo
15.
Curr Neuropharmacol ; 11(3): 315-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24179466

RESUMO

Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.

16.
Bioorg Med Chem ; 19(23): 7063-9, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22047804

RESUMO

The in vitro influence of Keggin structure polyoxotungstates, 12-tungstosilicic acid, H(4)SiW(12)O(40) (WSiA) and 12-tungstophosphoric acid, H(3)PW(12)O(40) (WPA), and monomer Na(2)WO(4) × 2H(2)O on rat synaptic plasma membrane (SPM) Na(+)/K(+)-ATPase and E-NTPDase activity was studied, whereas the commercial porcine cerebral cortex Na(+)/K(+)-ATPase served as a reference. Dose-dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated IC(50) (10 min) values, in mol/l, for SPM/commercial Na(+)/K(+)-ATPase, were: 3.4 × 10(-6)/4.3 × 10(-6), 2.9 × 10(-6)/3.1 × 10(-6) and 1.3 × 10(-3)/1.5 × 10(-3) for WSiA, WPA and Na(2)WO(4) × 2H(2)O, respectively. In the case of E-NTPDase, increasing concentrations of WSiA and WPA induced its activity reduction, while Na(2)WO(4) × 2H(2)O did not noticeably affect the enzyme activity at all investigated concentrations (up to 1 × 10(-3)mol/l). IC(50) (10 min) values, obtained from the inhibition curves, were (in mol/l): 4.1 × 10(-6) for WSiA and 1.6 × 10(-6) for WPA. Monolacunary Keggin anion was found as the main active molecular species present under physiological conditions (in the enzyme assays, pH 7.4), for the both polyoxotungstates solutions (1 mmol/l), using Fourier transform infrared (FT-IR) and micro-Raman spectroscopy. Additionally, commercial porcine cerebral cortex Na(+)/K(+)-ATPase was exposed to the mixture of Na(2)WO(4) × 2H(2)O and WSiA at different concentrations. Additive inhibition effect was achieved for lower concentrations of Na(2)WO(4) × 2H(2)O/WSiA (≤ 1 × 10(-3)/4 × 10(-6) mol/l), while antagonistic effect was obtained for all higher concentrations of the inhibitors.


Assuntos
Apirase/antagonistas & inibidores , Ácidos Fosfóricos/farmacologia , Ácido Silícico/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Compostos de Tungstênio/farmacologia , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Modelos Moleculares , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...