Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 42(4): 646-661.e9, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38428412

RESUMO

Cellular senescence can exert dual effects in tumors, either suppressing or promoting tumor progression. The senescence-associated secretory phenotype (SASP), released by senescent cells, plays a crucial role in this dichotomy. Consequently, the clinical challenge lies in developing therapies that safely enhance senescence in cancer, favoring tumor-suppressive SASP factors over tumor-promoting ones. Here, we identify the retinoic-acid-receptor (RAR) agonist adapalene as an effective pro-senescence compound in prostate cancer (PCa). Reactivation of RARs triggers a robust senescence response and a tumor-suppressive SASP. In preclinical mouse models of PCa, the combination of adapalene and docetaxel promotes a tumor-suppressive SASP that enhances natural killer (NK) cell-mediated tumor clearance more effectively than either agent alone. This approach increases the efficacy of the allogenic infusion of human NK cells in mice injected with human PCa cells, suggesting an alternative therapeutic strategy to stimulate the anti-tumor immune response in "immunologically cold" tumors.


Assuntos
Senescência Celular , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Receptores do Ácido Retinoico , Células Matadoras Naturais , Adapaleno
2.
Environ Int ; 184: 108447, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246039

RESUMO

INTRODUCTION: Although previous studies investigated the potential adverse effects of endocrine-disrupting chemicals (EDCs) on biological age acceleration and aging-related diseases, the mixed effect of multiple types of EDCs on biological age acceleration, including its potential underlying mechanism, remains unclear. METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) were used to analyze biological age measures, including Klemera-Doubal method biological age (KDM-BA), phenotypic age, and homeostatic dysregulation (HD). Weight quantile sum (WQS) regression was performed to screen biological age-related EDCs (BA-EDCs) and assess the mixed effect of BA-EDCs on biological age acceleration and aging-related disease. Targets of BA-EDCs were obtained from three databases, while heart aging-related genes were obtained from the Aging Anno database. Protein-protein interaction (PPI) network and MCODE algorithm were applied to identify potential interactions between BA-EDC targets and heart aging-related genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to identify related pathways. RESULTS: This cross-sectional study included 1,439 participants. A decile increase in BA-EDCs co-exposure was associated with 0.31 years and 0.17 years of KDM-BA and phenotypic age acceleration, respectively. The mixed effect of BA-EDCs was associated with an increased prevalence of atherosclerotic cardiovascular disease (ASCVD). Vitamins C and E demonstrated a significant interaction effect on the association between BA-EDCs and KDM-BA acceleration. PPI network and functional enrichment analysis indicated that the AGE-RAGE signaling pathway in diabetic complications was significantly enriched. CONCLUSION: Our results showed that the co-exposure effect of BA-EDCs was associated with biological age acceleration and ASCVD, with the AGE-RAGE signaling pathway being the underlying mechanism. Vitamins C and E may also be an actionable target for preventing EDC-induced biological aging.


Assuntos
Disruptores Endócrinos , Humanos , Inquéritos Nutricionais , Disruptores Endócrinos/toxicidade , Estudos Transversais , Envelhecimento , Vitaminas
4.
Nat Cancer ; 4(8): 1102-1121, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460872

RESUMO

Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.


Assuntos
Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Masculino , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/genética , Células Mieloides/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Osteopontina/metabolismo , Biglicano/metabolismo
5.
Nat Rev Urol ; 20(12): 706-718, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37491512

RESUMO

The human body hosts a complex and dynamic population of trillions of microorganisms - the microbiota - which influences the body in homeostasis and disease, including cancer. Several epidemiological studies have associated specific urinary and gut microbial species with increased risk of prostate cancer; however, causal mechanistic data remain elusive. Studies have associated bacterial generation of genotoxins with the occurrence of TMPRSS2-ERG gene fusions, a common, early oncogenic event during prostate carcinogenesis. A subsequent study demonstrated the role of the gut microbiota in prostate cancer endocrine resistance, which occurs, at least partially, through the generation of androgenic steroids fuelling oncogenic signalling via the androgen receptor. These studies present mechanistic evidence of how the host microbiota might be implicated in prostate carcinogenesis and tumour progression. Importantly, these findings also reveal potential avenues for the detection and treatment of prostate cancer through the profiling and modulation of the host microbiota. The latter could involve approaches such as the use of faecal microbiota transplantation, prebiotics, probiotics, postbiotics or antibiotics, which can be used independently or combined with existing treatments to reverse therapeutic resistance and improve clinical outcomes in patients with prostate cancer.


Assuntos
Microbioma Gastrointestinal , Probióticos , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/terapia , Neoplasias da Próstata/genética , Probióticos/uso terapêutico , Próstata/patologia , Carcinogênese
6.
Cell Commun Signal ; 21(1): 76, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055829

RESUMO

Androgen deprivation therapy (ADT) is a standard therapy for prostate cancer (PCa). Though disseminated disease is initially sensitive to ADT, an important fraction of the patients progresses to castration-resistant prostate cancer (CRPC). For this reason, the identification of novel effective therapies for treating CRPC is needed. Immunotherapeutic strategies focused on macrophages as antitumor effectors, directly enhancing their tumoricidal potential at the tumor microenvironment or their adoptive transfer after ex vivo activation, have arisen as promising therapies in several cancer types. Despite several approaches centered on the activation of tumor-associated macrophages (TAMs) in PCa are under investigation, to date there is no evidence of clinical benefit in patients. In addition, the evidence of the effectiveness of macrophage adoptive transfer on PCa is poor. Here we find that VSSP, an immunomodulator of the myeloid system, decreases TAMs and inhibits prostatic tumor growth when administered to castrated Pten-deficient prostate tumor-bearing mice. In mice bearing castration-resistant Ptenpc-/-; Trp53pc-/- tumors, VSSP administration showed no effect. Nevertheless, adoptive transfer of macrophages activated ex vivo with VSSP inhibited Ptenpc-/-; Trp53pc-/- tumor growth through reduction of angiogenesis and tumor cell proliferation and induction of senescence. Taken together, our results highlight the rationale of exploiting macrophage functional programming as a promising strategy for CRPC therapy, with particular emphasis on ex vivo-activated proinflammatory macrophage adoptive transfer. Video abstract.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Camundongos , Animais , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antagonistas de Androgênios/farmacologia , Macrófagos , Próstata/patologia , Proliferação de Células , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Nat Commun ; 13(1): 2177, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449130

RESUMO

Cells subjected to treatment with anti-cancer therapies can evade apoptosis through cellular senescence. Persistent senescent tumor cells remain metabolically active, possess a secretory phenotype, and can promote tumor proliferation and metastatic dissemination. Removal of senescent tumor cells (senolytic therapy) has therefore emerged as a promising therapeutic strategy. Here, using single-cell RNA-sequencing, we find that senescent tumor cells rely on the anti-apoptotic gene Mcl-1 for their survival. Mcl-1 is upregulated in senescent tumor cells, including cells expressing low levels of Bcl-2, an established target for senolytic therapy. While treatment with the Bcl-2 inhibitor Navitoclax results in the reduction of metastases in tumor bearing mice, treatment with the Mcl-1 inhibitor S63845 leads to complete elimination of senescent tumor cells and metastases. These findings provide insights on the mechanism by which senescent tumor cells survive and reveal a vulnerability that can be exploited for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/genética , Senescência Celular/genética , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transcriptoma
8.
Cancer Cell ; 39(1): 68-82.e9, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33186519

RESUMO

Metastases account for most cancer-related deaths, yet the mechanisms underlying metastatic spread remain poorly understood. Recent evidence demonstrates that senescent cells, while initially restricting tumorigenesis, can induce tumor progression. Here, we identify the metalloproteinase inhibitor TIMP1 as a molecular switch that determines the effects of senescence in prostate cancer. Senescence driven either by PTEN deficiency or chemotherapy limits the progression of prostate cancer in mice. TIMP1 deletion allows senescence to promote metastasis, and elimination of senescent cells with a senolytic BCL-2 inhibitor impairs metastasis. Mechanistically, TIMP1 loss reprograms the senescence-associated secretory phenotype (SASP) of senescent tumor cells through activation of matrix metalloproteinases (MMPs). Loss of PTEN and TIMP1 in prostate cancer is frequent and correlates with resistance to docetaxel and worst clinical outcomes in patients treated in an adjuvant setting. Altogether, these findings provide insights into the dual roles of tumor-associated senescence and can potentially impact the treatment of prostate cancer.


Assuntos
Docetaxel/administração & dosagem , Deleção de Genes , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/patologia , Inibidor Tecidual de Metaloproteinase-1/genética , Animais , Senescência Celular/efeitos dos fármacos , Docetaxel/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...