Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Vet Med Assoc ; 262(3): 1-7, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134457

RESUMO

OBJECTIVE: To identify the rate at which medication errors occurred over a 2-year period in a large animal veterinary teaching hospital and describe the types of errors that occurred. SAMPLE: 226 medication errors over 6,155 large animal visits occurred during the study period. Multiple errors may have affected the same patient. METHODS: Medication error reports from March 1, 2021, to March 31, 2023, were reviewed retrospectively and classified by species, type of drug, and month and day of the week the error occurred. Errors were categorized according to multiple previously developed systems to allow for comparison to other studies. RESULTS: 226 medication errors occurred over 6,155 patient visits in a 2-year period: 57.5% (130/226) were identified by a dedicated large animal pharmacist, and 64.2% (145/226) of errors were identified and corrected before reaching the patient. Prescription/medication order errors (58.4% [132/226]) occurred significantly more often than errors in medication preparation (21.7% [49/226]; P < .001) and administration (19.6%; P < .001). Antibiotics (48.7% [110/226]) and NSAIDs (17.7% [40/226]) were the drug classes most involved in errors. CLINICAL RELEVANCE: Most medication errors in this study occurred in the ordering/prescribing phase. This is similar to reports in human medicine, where standardized medication error reporting strategies exist. Developing and applying similar strategies in veterinary medicine may improve patient safety and outcome.


Assuntos
Hospitais Veterinários , Hospitais de Ensino , Animais , Humanos , Estudos Retrospectivos , Erros de Medicação/veterinária , Segurança do Paciente
2.
J Am Chem Soc ; 142(5): 2293-2300, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31934753

RESUMO

We describe the synthesis and electronic properties of new π-conjugated small molecules and polymers that combine the linear intramolecular conjugation pathways commonly associated with organic electronic materials with the emerging properties of radial conjugation found in cycloparaphenylenes (CPPs) and other curved π-surfaces. Using arylene ethynylenes as prototypical linear segments and [6]/[8]CPP as the radial segments, we demonstrate the formation of new electronic states that are not simply additive responses from the individual components. Quantum chemical calculations of model oligomeric structures reveal these electronic processes to arise from the hybrid nature of wave function delocalization over the linear and radial contributors in the photophysically relevant electronic states.

3.
Chem Sci ; 11(44): 12029-12035, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34094422

RESUMO

Cycloparaphenylenes have promise as novel fluorescent materials. However, shifting their fluorescence beyond 510 nm is difficult. Herein, we computationally explore the effect of incorporating electron accepting and electron donating units on CPP photophysical properties at the CAM-B3LYP/6-311G** level. We demonstrate that incorporation of donor and acceptor units may shift the CPP fluorescence as far as 1193 nm. This computational work directs the synthesis of bright red-emitting CPPs. Furthermore, the nanohoop architecture allows for interrogation of strain effects on common conjugated polymer donor and acceptor units. Strain results in a bathochromic shift versus linear variants, demonstrating the value of using strain to push the limits of low band gap materials.

4.
Chem Sci ; 11(15): 3923-3930, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-34122862

RESUMO

Strain has a unique and sometimes unpredictable impact on the properties and reactivity of molecules. To thoroughly describe strain in molecules, a computational tool that relates strain energy to reactivity by localizing and quantifying strain was developed. Strain energy is calculated local to every coordinate in the molecule and areas of higher strain are shown experimentally to be more reactive. Not only does this tool directly compare strain energy in parts of the same molecule, but it also computes total strain to give a full picture of molecular strain energy. It is freely available to the public on GitHub under the name StrainViz and much of the workflow is automated to simplify use for non-experts. Unique insight into the reactivity of curved aromatic molecules and strained alkyne bioorthogonal reagents is described within.

5.
Chem Sci ; 10(13): 3786-3790, 2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30996967

RESUMO

[n]Cycloparaphenylenes, or "carbon nanohoops," are unique conjugated macrocycles with radially oriented π-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as meta[n]cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent [n]cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficients and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented π-systems.

6.
J Am Chem Soc ; 138(20): 6577-82, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27133789

RESUMO

The construction of all sp(2)-hybridized molecular belts has been an ongoing challenge in the chemistry community for decades. Despite numerous attempts, these double-stranded macrocycles remain outstanding synthetic challenges. Prior approaches have relied on late-state oxidations and/or acid-catalyzed processes that have been incapable of accessing the envisaged targets. Herein, we describe the development of an iterative reductive aromatization/ring-closing metathesis approach. Successful syntheses of nanohoop targets containing benzo[k]tetraphene and dibenzo[c,m]pentaphene moieties not only provide proof of principle that aromatic belts can be derived by this new strategy but also represent some of the largest aromatic belt fragments reported to date.


Assuntos
Ciclização , Cristalografia por Raios X , Eletroquímica , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...