Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 144(3): 537-563, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35844027

RESUMO

X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention.


Assuntos
Miopatias Congênitas Estruturais , Peixe-Zebra , Animais , Modelos Animais de Doenças , Epigênese Genética , Camundongos , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/tratamento farmacológico , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia , Peixe-Zebra/metabolismo
2.
Sci Adv ; 8(12): eabg9055, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333579

RESUMO

Dysregulations of lipid metabolism in the liver may trigger steatosis progression, leading to potentially severe clinical consequences such as nonalcoholic fatty liver diseases (NAFLDs). Molecular mechanisms underlying liver lipogenesis are very complex and fine-tuned by chromatin dynamics and multiple key transcription factors. Here, we demonstrate that the nuclear factor HMGB1 acts as a strong repressor of liver lipogenesis. Mice with liver-specific Hmgb1 deficiency display exacerbated liver steatosis, while Hmgb1-overexpressing mice exhibited a protection from fatty liver progression when subjected to nutritional stress. Global transcriptome and functional analysis revealed that the deletion of Hmgb1 gene enhances LXRα and PPARγ activity. HMGB1 repression is not mediated through nucleosome landscape reorganization but rather via a preferential DNA occupation in a region carrying genes regulated by LXRα and PPARγ. Together, these findings suggest that hepatocellular HMGB1 protects from liver steatosis development. HMGB1 may constitute a new attractive option to therapeutically target the LXRα-PPARγ axis during NAFLD.

3.
PLoS Pathog ; 17(11): e1010020, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34724002

RESUMO

Mycobacterium tuberculosis, the main causative agent of human tuberculosis, is transmitted from person to person via small droplets containing very few bacteria. Optimizing the chance to seed in the lungs is therefore a major adaptation to favor survival and dissemination in the human population. Here we used TnSeq to identify genes important for the early events leading to bacterial seeding in the lungs. Beside several genes encoding known virulence factors, we found three new candidates not previously described: rv0180c, rv1779c and rv1592c. We focused on the gene, rv0180c, of unknown function. First, we found that deletion of rv0180c in M. tuberculosis substantially reduced the initiation of infection in the lungs of mice. Next, we established that Rv0180c enhances entry into macrophages through the use of complement-receptor 3 (CR3), a major phagocytic receptor for M. tuberculosis. Silencing CR3 or blocking the CR3 lectin site abolished the difference in entry between the wild-type parental strain and the Δrv0180c::km mutant. However, we detected no difference in the production of both CR3-known carbohydrate ligands (glucan, arabinomannan, mannan), CR3-modulating lipids (phthiocerol dimycocerosate), or proteins in the capsule of the Δrv0180c::km mutant in comparison to the wild-type or complemented strains. By contrast, we established that Rv0180c contributes to the functionality of the bacterial cell envelope regarding resistance to toxic molecule attack and cell shape. This alteration of bacterial shape could impair the engagement of membrane receptors that M. tuberculosis uses to invade host cells, and open a new perspective on the modulation of bacterial infectivity.


Assuntos
Proteínas de Bactérias/metabolismo , Forma Celular , Parede Celular/química , Macrófagos/microbiologia , Metaloproteinases da Matriz/metabolismo , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/metabolismo , Macrófagos/patologia , Metaloproteinases da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/metabolismo , Tuberculose/metabolismo , Tuberculose/patologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Stem Cell Reports ; 16(11): 2718-2735, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34678205

RESUMO

In Parkinson's disease (PD), substantia nigra (SN) dopaminergic (DA) neurons degenerate, while related ventral tegmental area (VTA) DA neurons remain relatively unaffected. Here, we present a methodology that directs the differentiation of mouse and human pluripotent stem cells toward either SN- or VTA-like DA lineage and models their distinct vulnerabilities. We show that the level of WNT activity is critical for the induction of the SN- and VTA-lineage transcription factors Sox6 and Otx2, respectively. Both WNT signaling modulation and forced expression of these transcription factors can drive DA neurons toward the SN- or VTA-like fate. Importantly, the SN-like lineage enriched DA cultures recapitulate the selective sensitivity to mitochondrial toxins as observed in PD, while VTA-like neuron-enriched cultures are more resistant. Furthermore, a proteomics approach led to the identification of compounds that alter SN neuronal survival, demonstrating the utility of our strategy for disease modeling and drug discovery.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/genética , Doença de Parkinson/genética , Células-Tronco Pluripotentes/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Neurológicos , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Substância Negra/citologia , Área Tegmentar Ventral/citologia
5.
Sci Rep ; 11(1): 19236, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584135

RESUMO

In poultry, in vitro propagated primordial germ cells (PGCs) represent an important tool for the cryopreservation of avian genetic resources. However, several studies have highlighted sexual differences exhibited by PGCs during in vitro propagation, which may compromise their reproductive capacities. To understand this phenomenon, we compared the proteome of pregonadal migratory male (ZZ) and female (ZW) chicken PGCs propagated in vitro by quantitative proteomic analysis using a GeLC-MS/MS strategy. Many proteins were found to be differentially abundant in chicken male and female PGCs indicating their early sexual identity. Many of the proteins more highly expressed in male PGCs were encoded by genes localised to the Z sex chromosome. This suggests that the known lack of dosage compensation of the transcription of Z-linked genes between sexes persists at the protein level in PGCs, and that this may be a key factor of their autonomous sex differentiation. We also found that globally, protein differences do not closely correlate with transcript differences indicating a selective translational mechanism in PGCs. Male and female PGC expressed protein sets were associated with differential biological processes and contained proteins known to be biologically relevant for male and female germ cell development, respectively. We also discovered that female PGCs have a higher capacity to uptake proteins from the cell culture medium than male PGCs. This study presents the first evidence of an early predetermined sex specific cell fate of chicken PGCs and their sexual molecular specificities which will enable the development of more precise sex-specific in vitro culture conditions for the preservation of avian genetic resources.


Assuntos
Diferenciação Celular/genética , Galinhas/genética , Células Germinativas/fisiologia , Processos de Determinação Sexual/genética , Criação de Animais Domésticos/métodos , Animais , Cruzamento/métodos , Embrião de Galinha , Feminino , Masculino , Proteômica
6.
Plant J ; 106(5): 1298-1311, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33733554

RESUMO

As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for determining this plasticity. This list was enriched in genes related to transcription, DNA repair and signal transduction, with many of them being stress responsive. Other over-represented genes were related to sulfur and aspartate family pathways leading to the synthesis of the nutritionally essential amino acids methionine and lysine. By placing these genes in metabolic pathways, and using a M. truncatula mutant impaired in regenerating methionine from S-methylmethionine, we discovered that methionine recycling pathways are major contributors to globulin composition establishment and plasticity. These data provide a unique resource of genes that can be targeted to mitigate negative impacts of environmental stresses on seed protein composition.


Assuntos
Medicago truncatula/genética , Proteínas de Armazenamento de Sementes/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Globulinas/genética , Globulinas/metabolismo , Medicago truncatula/fisiologia , Metionina/metabolismo , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/genética , Sementes/genética , Sementes/fisiologia , Estresse Fisiológico , Vitamina U/metabolismo
7.
Front Vet Sci ; 7: 584948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330709

RESUMO

Follicular fluid (FF) fills the interior portion of the ovarian antral follicle and provides a suitable microenvironment for the growth of the enclosed oocyte through molecular factors that originate from plasma and the secretions of follicular cells. FF contains extracellular nanovesicles (ffEVs), including 30-100-nm membrane-coated exosomes, which carry different types of RNA, proteins, and lipids and directly influence oocyte competence to develop embryo. In the present study, we aimed to characterize the protein cargo of EVs from the FF of 3-6-mm follicles and uncover the origins of ffEVs by assessing expression levels of corresponding mRNAs in bovine follicular cells and oocyte and cell proteomes. Isolated exosome-like ffEVs were 53.6 + 23.3 nm in size and could be internalized by cumulus-oocyte complex. Proteomes of ffEVs and granulosa cells (GC) were assessed using nanoflow liquid chromatography coupled with high-resolution tandem mass spectrometry after the gel fractionation of total proteins. In total, 460 protein isoforms corresponding to 322 unique proteins were identified in ffEVs; among them, 190 were also identified via GC. Gene Ontology terms related to the ribosome, protein and RNA folding, molecular transport, endocytosis, signal transduction, complement and coagulation cascades, apoptosis, and developmental biology pathways, including PI3K-Akt signaling, were significantly enriched features of ffEV proteins. FfEVs contain numerous ribosome and RNA-binding proteins, which may serve to compact different RNAs to regulate gene expression and RNA degradation, and might transfer ribosomal constituents to the oocyte. Majority of genes encoding ffEV proteins expressed at different levels in follicular cells and oocyte, corroborating with numerous proteins, which were reported in bovine oocyte and cumulus cells in other studies thus indicating possible origin of ffEV proteins. The limited abundance of several mRNAs within follicular cells indicated that corresponding ffEV proteins likely originated from circulating exosomes released by other tissues. Analysis of bovine ffEV transcriptome revealed that mRNAs present in ffEV accounted for only 18.3% of detected ffEV proteins. In conclusion, our study revealed numerous proteins within ffEVs, which originated from follicular and other cells. These proteins are likely involved in the maintenance of follicular homeostasis and may affect oocyte competence.

8.
Sci Rep ; 10(1): 20252, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219330

RESUMO

Implantable cardioverter-defibrillators (ICD) are meant to fight life-threatening ventricular arrhythmias and reduce overall mortality. Ironically, life-saving shocks themselves have been shown to be independently associated with an increased mortality. We sought to identify myocardial changes at the protein level immediately after ICD electrical shocks using a proteomic approach. ICD were surgically implanted in 10 individuals of a healthy male sheep model: a control group (N = 5) without any shock delivery and a shock group (N = 5) with the delivery of 5 consecutive shocks at 41 J. Myocardial tissue samples were collected at the right-ventricle apex near to the lead coil and at the right ventricle basal free wall region. Global quantitative proteomics experiments on myocardial tissue samples were performed using mass spectrometry techniques. Proteome was significantly modified after electrical shock and several mechanisms were associated: protein, DNA and membrane damages due to extreme physical conditions induced by ICD-shock but also due to regulated cell death; metabolic remodeling; oxidative stress; calcium dysregulation; inflammation and fibrosis. These proteome modifications were seen in myocardium both "near" and "far" from electrical shock region. N-term acetylated troponin C was an interesting tissular biomarker, significantly decreased after electrical shock in the "far" region (AUC: 0.93). Our data support an acute shock-induced myocardial tissue injury which might be involved in acute paradoxical deleterious effects such as heart failure and ventricular arrhythmias.


Assuntos
Cardioversão Elétrica , Miocárdio/patologia , Proteômica , Animais , Masculino , Modelos Animais , Miocárdio/metabolismo , Ovinos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
J Biol Chem ; 295(47): 15853-15869, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816992

RESUMO

Amorphous calcium carbonate (ACC) is an unstable mineral phase, which is progressively transformed into aragonite or calcite in biomineralization of marine invertebrate shells or avian eggshells, respectively. We have previously proposed a model of vesicular transport to provide stabilized ACC in chicken uterine fluid where eggshell mineralization takes place. Herein, we report further experimental support for this model. We confirmed the presence of extracellular vesicles (EVs) using transmission EM and showed high levels of mRNA of vesicular markers in the oviduct segments where eggshell mineralization occurs. We also demonstrate that EVs contain ACC in uterine fluid using spectroscopic analysis. Moreover, proteomics and immunofluorescence confirmed the presence of major vesicular, mineralization-specific and eggshell matrix proteins in the uterus and in purified EVs. We propose a comprehensive role for EVs in eggshell mineralization, in which annexins transfer calcium into vesicles and carbonic anhydrase 4 catalyzes the formation of bicarbonate ions (HCO[Formula: see text]), for accumulation of ACC in vesicles. We hypothesize that ACC is stabilized by ovalbumin and/or lysozyme or additional vesicle proteins identified in this study. Finally, EDIL3 and MFGE8 are proposed to serve as guidance molecules to target EVs to the mineralization site. We therefore report for the first-time experimental evidence for the components of vesicular transport to supply ACC in a vertebrate model of biomineralization.


Assuntos
Proteínas Aviárias/metabolismo , Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Galinhas/metabolismo , Casca de Ovo/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Animais , Casca de Ovo/ultraestrutura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino
10.
J Proteomics ; 209: 103511, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31493547

RESUMO

The Guinea fowl eggshell is a bioceramic material with the remarkable mechanical property of being twice as strong as the chicken eggshell. Both eggshells are composed of 95% calcite and 3.5% organic matrix, which control its structural organization. Chicken eggshell is made of columnar calcite crystals arranged vertically. In the Guinea fowl, the same structure is observed in its inner half, followed by a dramatic change in crystal size and orientation in the outer region. Guinea fowl eggshell is thicker than chicken eggshell. Both structure and shell thickness confer a superior resistance to breakage compared to eggshells of other bird species. To understand the underlying mechanisms controlling the structural organization of this highly resistant material, we used quantitative proteomics to analyze the protein composition of the Guinea fowl eggshell organic matrix at key stages of the biomineralization process. We identified 149 proteins, which were compared to other bird eggshell proteomes and analyzed their potential functions. Among the 149 proteins, 9 are unique to Guinea fowl, some are involved in the control of the calcite precipitation (Lysozyme, Ovocleidin-17-like, Ovocleidin-116 and Ovalbumin), 61 are only found in the zone of microstructure shift and 17 are more abundant in this zone. SIGNIFICANCE: The avian eggshell is a critical physical barrier to protect the contents of this autonomous reproductive enclosure from physical and microbial assault. The Guinea fowl (Numida meleagris) eggshell exhibits a unique microstructure (texture), which confers exceptional mechanical properties compared to eggshells of other species. In order to understand the mechanisms that regulate formation of this texture in the Guinea fowl eggshell, we performed comparative quantitative proteomics at key stages of shell mineralization and particularly during the dramatic shift in shell microstructure. We demonstrate that the Guinea fowl eggshell proteome comprises 149 proteins, of which 61 were specifically associated with the change in size and orientation of calcite crystals. Comparative proteomics analysis with eggshell of other bird species leads to new insights into the biomineralization process. Moreover, our data represents a list of organic compounds as potential additives to regulate material design for industrial fabrication of ceramics. This information also provides molecular markers for efficient genomic selection of chicken strains to lay eggs with improved shell mechanical properties for enhanced food safety.


Assuntos
Casca de Ovo/química , Proteínas/agonistas , Animais , Biomineralização , Carbonato de Cálcio/química , Galinhas , Proteínas do Ovo/análise , Muramidase/análise , Ovalbumina/análise , Proteínas/análise
11.
Eur J Med Chem ; 168: 373-384, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826512

RESUMO

In this work, we aimed to understand the biological activity and the mechanism of action of three polymer-'ruthenium-cyclopentadienyl' conjugates (RuPMC) and a low molecular weight parental compound (Ru1) in cancer cells. Several biological assays were performed in ovarian (A2780) and breast (MCF7, MDA-MB-231) human cancer derived cell lines as well as in A2780cis, a cisplatin resistant cancer cell line. Our results show that all compounds have high activity towards cancer cells with low IC50 values in the micromolar range. We observed that all Ru-PMC compounds are mainly found inside the cells, in contrast with the parental low molecular weight compound Ru1 that was mainly found at the membrane. All compounds induced mitochondrial alterations. PMC3 and Ru1 caused F-actin cytoskeleton morphology changes and reduced the clonogenic ability of the cells. The conjugate PMC3 induced apoptosis at low concentrations comparing to cisplatin and could overcame the platinum resistance of A2780cis cancer cells. A proteomic analysis showed that these compounds induce alterations in several cellular proteins which are related to the phenotypic disorders induced by them. Our results suggest that PMC3 is foreseen as a lead candidate to future studies and acting through a different mechanism of action than cisplatin. Here we established the potential of these Ru compounds as new metallodrugs for cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ciclopentanos/química , Polímeros/farmacologia , Rutênio/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Relação Estrutura-Atividade
12.
J Exp Bot ; 70(16): 4287-4304, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-30855667

RESUMO

Water stress and sulfur (S) deficiency are two constraints increasingly faced by crops due to climate change and low-input agricultural practices. To investigate their interaction in the grain legume pea (Pisum sativum), sulfate was depleted at the mid-vegetative stage and a moderate 9-d water stress period was imposed during the early reproductive phase. The combination of the stresses impeded reproductive processes in a synergistic manner, reducing seed weight and seed number, and inducing seed abortion, which highlighted the paramount importance of sulfur for maintaining seed yield components under water stress. On the other hand, the moderate water stress mitigated the negative effect of sulfur deficiency on the accumulation of S-rich globulins (11S) in seeds, probably due to a lower seed sink strength for nitrogen, enabling a readjustment of the ratio of S-poor (7S) to 11S globulins. Transcriptome analysis of developing seeds at the end of the combined stress period indicated that similar biological processes were regulated in response to sulfur deficiency and to the combined stress, but that the extent of the transcriptional regulation was greater under sulfur deficiency. Seeds from plants subjected to the combined stresses showed a specific up-regulation of a set of transcription factor and SUMO ligase genes, indicating the establishment of unique regulatory processes when sulfur deficiency is combined with water stress.


Assuntos
Globulinas/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Enxofre/metabolismo , Água/metabolismo , Globulinas/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Sementes/genética
13.
Mol Cell Proteomics ; 18(Suppl 1): S174-S190, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444982

RESUMO

In many amniotes, the amniotic fluid is depicted as a dynamic milieu that participates in the protection of the embryo (cushioning, hydration, and immunity). However, in birds, the protein profile of the amniotic fluid remains unexplored, even though its proteomic signature is predicted to differ compared with that of humans. In fact, unlike humans, chicken amniotic fluid does not collect excretory products and its protein composition strikingly changes at mid-development because of the massive inflow of egg white proteins, which are thereafter swallowed by the embryo to support its growth. Using GeLC-MS/MS and shotgun strategies, we identified 91 nonredundant proteins delineating the chicken amniotic fluid proteome at day 11 of development, before egg white transfer. These proteins were essentially associated with the metabolism of nutrients, immune response and developmental processes. Forty-eight proteins were common to both chicken and human amniotic fluids, including serum albumin, apolipoprotein A1 and alpha-fetoprotein. We further investigated the effective role of chicken amniotic fluid in innate defense and revealed that it exhibits significant antibacterial activity at day 11 of development. This antibacterial potential is drastically enhanced after egg white transfer, presumably due to lysozyme, avian beta-defensin 11, vitelline membrane outer layer protein 1, and beta-microseminoprotein-like as the most likely antibacterial candidates. Interestingly, several proteins recovered in the chicken amniotic fluid prior and after egg white transfer are uniquely found in birds (ovalbumin and related proteins X and Y, avian beta-defensin 11) or oviparous species (vitellogenins 1 and 2, riboflavin-binding protein). This study provides an integrative overview of the chicken amniotic fluid proteome and opens stimulating perspectives in deciphering the role of avian egg-specific proteins in embryonic development, including innate immunity. These proteins may constitute valuable biomarkers for poultry production to detect hazardous situations (stress, infection, etc.), that may negatively affect the development of the chicken embryo.


Assuntos
Líquido Amniótico/metabolismo , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Animais , Antibacterianos/metabolismo , Clara de Ovo , Desenvolvimento Embrionário , Evolução Molecular , Ontologia Genética , Filogenia , Proteoma/metabolismo , Proteômica
14.
Reproduction ; 155(5): 457-466, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29540510

RESUMO

The interactions between oviductal fluid (OF) proteins and spermatozoa play major roles in sperm selection, storage and capacitation before fertilization. However, only a few sperm-interacting proteins in the OF has been identified and very little is known about the regulation of sperm-oviduct interactions across the estrous cycle. Samples of bovine frozen-thawed sperm from three bulls were incubated with OF at pre-, post-ovulatory stages (Pre-/Post-ov) or luteal phase (LP) of the estrous cycle (7 mg/mL proteins, treated groups) or with a protein-free media (control). The proteomes of sperm cells were assessed by nanoLC-MS/MS and quantified by label-free methods. A total of 27 sperm-interacting proteins originating in the OF were identified. Among those, 14 were detected at all stages, eight at Post-ov and LP and five only at LP. The sperm-interacting proteins detected at all stages or at LP and Post-ov were on average more abundant at LP than at other stages (P < 0.05). At Pre-ov, OVGP1 was the most abundant sperm-interacting protein while at Post-ov, ACTB, HSP27, MYH9, MYH14 and OVGP1 were predominant. Different patterns of abundance of sperm-interacting proteins related to the stage were evidenced, which greatly differed from those previously reported in the bovine OF. In conclusion, this study highlights the important regulations of sperm-oviduct interactions across the estrous cycle and provides new protein candidates that may modulate sperm functions.


Assuntos
Oviductos/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Animais , Bovinos , Ciclo Estral/fisiologia , Feminino , Glicoproteínas/metabolismo , Masculino , Proteômica , Espectrometria de Massas em Tandem
15.
J Proteomics ; 155: 1-10, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28099885

RESUMO

Although essential for artificial insemination (AI) and MOET (multiple ovulation and embryo transfer), oestrus synchronisation and superovulation are associated with increased female reproductive tract mucus production and altered sperm transport. The effects of such breeding practices on the ovine cervicovaginal (CV) mucus proteome have not been detailed. The aim of this study was to qualitatively and quantitatively investigate the Merino CV mucus proteome in naturally cycling (NAT) ewes at oestrus and mid-luteal phase, and quantitatively compare CV oestrus mucus proteomes of NAT, progesterone synchronised (P4) and superovulated (SOV) ewes. Quantitative analysis revealed 60 proteins were more abundant during oestrus and 127 were more abundant during the luteal phase, with 27 oestrus specific and 40 luteal specific proteins identified. The oestrus proteins most disparate in abundance compared to mid-luteal phase were ceruloplasmin (CP), chitinase-3-like protein 1 (CHI3L1), clusterin (CLU), alkaline phosphatase (ALPL) and mucin-16 (MUC16). Exogenous hormones greatly altered the proteome with 51 and 32 proteins more abundant and 98 and 53 proteins less abundant, in P4 and SOV mucus, respectively when compared to NAT mucus. Investigation of the impact of these proteomic changes on sperm motility and longevity within mucus may help improve sperm transport and fertility following cervical AI. SIGNIFICANCE: This manuscript is the first to detail the proteome of ovine cervicovaginal mucus using qualitative and quantitative proteomic methods over the oestrous cycle in naturally cycling ewes, and also after application of common oestrus synchronisation and superovulation practices. The investigation of the mucus proteome throughout both the follicular and luteal periods of the oestrous cycle, and also after oestrous synchronisation and superovulation provides information about the endocrine control and the effects that exogenous hormones have on protein expression in the female reproductive tract. This information contributes to the field by providing important information on the changes that occur to the cervicovaginal mucus proteome after use of exogenous hormones in controlled breeding programs, which are commonly used on farm and also in a research setting.


Assuntos
Colo do Útero/metabolismo , Estro/fisiologia , Muco/metabolismo , Proteoma/metabolismo , Superovulação/fisiologia , Vagina/metabolismo , Animais , Feminino , Ovinos
16.
J Leukoc Biol ; 101(1): 253-259, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587403

RESUMO

Polymorphonuclear neutrophils (PMNs) can contribute to the regulation of the host immune response by crosstalk with innate and adaptive leukocytes, including NK cells. Mechanisms by which this immunoregulation process occurs remain incompletely understood. Here, we focused on the effect of human neutrophil-derived serine proteases on NKp46, a crucial activating receptor expressed on NK cells. We used flow cytometry, Western blotting, and mass spectrometry (MS) analysis to reveal that cathepsin G [CG; and not elastase or proteinase 3 (PR3)] induces a time- and concentration-dependent, down-regulatory effect on NKp46 expression through a restricted proteolytic mechanism. We also used a functional assay to demonstrate that NKp46 cleavage by CG severely impairs NKp46-mediated responses of NK cells, including IFN-γ production and cell degranulation. Importantly, sputa of cystic fibrosis (CF) patients, which have high concentrations of CG, also alter NKp46 on NK cells. Hence, we have identified a new immunoregulatory mechanism of neutrophils that proteolytically disarms NK cell responses.


Assuntos
Células Matadoras Naturais/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Neutrófilos/metabolismo , Catepsina G/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo , Humanos , Células K562 , Receptor 1 Desencadeador da Citotoxicidade Natural/química , Ativação de Neutrófilo
17.
J Proteome Res ; 15(10): 3700-3711, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27636150

RESUMO

Sperm proteomes have emerged for several species; however, the extent of species similarity is unknown. Sheep are an important agricultural species for which a comprehensive sperm proteome has not been produced. In addition, potential proteomic factors from seminal plasma that may contribute to improved fertility after cervical insemination are yet to be explored. Here we use liquid chromatography-tandem mass spectrometry to investigate the proteome of ejaculated ram spermatozoa, with quantitative comparison to epididymal spermatozoa. We also present a comparison to published proteomes of five other species. We identified 685 proteins in ejaculated ram spermatozoa, with the most abundant proteins involved in metabolic pathways. Only 5% of ram sperm proteins were not detected in other species, which suggest highly conserved structures and pathways. Of the proteins present in both epididymal and ejaculated ram spermatozoa, 7% were more abundant in ejaculated spermatozoa. Only two membrane-bound proteins were detected solely in ejaculated sperm lysates: liver enriched gene 1 (LEG1/C6orf58) and epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3). This is the first evidence that despite its relatively complex proteomic composition, seminal plasma exposure leads to few novel proteins binding tightly to the ram sperm plasma membrane.


Assuntos
Membrana Celular/metabolismo , Proteômica/métodos , Proteínas de Plasma Seminal/análise , Espermatozoides/química , Animais , Cromatografia Líquida , Fertilidade , Masculino , Espectrometria de Massas , Redes e Vias Metabólicas , Ligação Proteica , Proteínas/metabolismo , Ovinos , Espermatozoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...