Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15358-15368, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38767194

RESUMO

Photofragmentation spectra of protonated vanillin produced under electrospray ionisation (ESI) conditions have been recorded in the 3000-3700 cm-1 (vibrational) and 225-460 nm (electronic) ranges, using room temperature IRMPD (infrared multiphoton dissociation) and cryogenic UVPD (ultraviolet photodissociation) spectroscopies, respectively. The cold (∼50 K) electronic UVPD spectrum exhibits very well resolved vibrational structure for the S1 ← S0 and S3 ← S0 transitions, suggesting long excited state dynamics, similar to its simplest analogue, protonated benzaldehyde. The experimental data were combined with theoretical calculations to determine the protonation site and configurational isomer observed in the experiments.

2.
Org Biomol Chem ; 22(12): 2395-2403, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38412026

RESUMO

The synthesis of six model trisaccharides representative of galactomannans produced by lichens was performed through stereoselective glycosylation. These standards include linear and branched galactomannans bearing either galactofuranosyl or galactopyranosyl entities. The complete assignment of 1H and 13C signals for both forms of synthetically reduced oligosaccharides was performed. The resulting NMR data were used to quickly demonstrate the structural characteristics of minor polysaccharides within different extracts of three representative lichens.


Assuntos
Galactose/análogos & derivados , Líquens , Polissacarídeos/química , Mananas/química , Espectroscopia de Ressonância Magnética/métodos
3.
Beilstein J Org Chem ; 19: 1825-1831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090629

RESUMO

Carbohydrate sequencing is a formidable task identified as a strategic goal in modern biochemistry. It relies on identifying a large number of isomers and their connectivity with high accuracy. Recently, gas phase vibrational laser spectroscopy combined with mass spectrometry tools have been proposed as a very promising sequencing approach. However, its use as a generic analytical tool relies on the development of recognition techniques that can analyse complex vibrational fingerprints for a large number of monomers. In this study, we used a Bayesian deep neural network model to automatically identify and classify vibrational fingerprints of several monosaccharides. We report high performances of the obtained trained algorithm (GlAIcomics), that can be used to discriminate contamination and identify a molecule with a high degree of confidence. It opens the possibility to use artificial intelligence in combination with spectroscopy-augmented mass spectrometry for carbohydrates sequencing and glycomics applications.

4.
Phys Chem Chem Phys ; 25(30): 20373-20380, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37465915

RESUMO

In contrast with the predominant pyranose form of galactose, galactofuranose is known to be highly flexible. Such flexibility poses a remarkable challenge in terms of structural studies, thus hindering the in depth understanding of the structure/function relationship in this rare sugar. A thorough computational study based on molecular dynamics and density functional theory supported by vibrational spectroscopy in the gas phase was carried out to provide a better understanding of the instrinsic conformational preferences of galactofuranose. Based on energetic and spectroscopic criteria, we report a subtantially reduced conformational landscape: methyl α-D-galactofuranose adopts E2/1E conformations and methyl ß-D-galactofuranose adopts 1T2/1E conformations.

5.
J Am Chem Soc ; 145(28): 15180-15187, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418616

RESUMO

Analysis of glycans remains a difficult task due to their isomeric complexity. Despite recent progress, determining monosaccharide ring size, a type of isomerism, is still challenging due to the high flexibility of the five-membered ring (also called furanose). Galactose is a monosaccharide that can be naturally found in furanose configuration in plant and bacterial polysaccharides. In this study, we used the coupling of tandem mass spectrometry and infrared ion spectroscopy (MS/MS-IR) to investigate compounds containing galactofuranose and galactopyranose. We report the IR fingerprints of monosaccharide fragments and demonstrate for the first time galactose ring-size memory upon collision-induced dissociation (CID) conditions. The linkage of the galactose unit is further obtained by analyzing disaccharide fragments. These findings enable two possible applications. First, labeled oligosaccharide patterns can be analyzed by MS/MS-IR, yielding full sequence information, including the ring size of the galactose unit; second, MS/MS-IR can be readily applied to unlabeled oligosaccharides to rapidly identify the presence of a galactofuranose unit, as a standalone analysis or prior to further sequencing.


Assuntos
Galactose , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Oligossacarídeos/química , Isomerismo , Polissacarídeos
6.
J Am Soc Mass Spectrom ; 34(4): 627-639, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971653

RESUMO

Carbohydrates are ubiquitous in nature but are among the least conserved biomolecules in life. These biopolymers pose a particular challenge to analytical chemists because of their high diversity and structural heterogeneity. In addition, they contain many isomerisms that complicate their structural characterization, notably by mass spectrometry. The tautomerism of the constitutive subunits is of particular interest. A given cyclized monosaccharide unit can take two forms: a most common 6-membered ring (pyranose, p) and a more flexible 5-membered ring (furanose, f). The tautomers impact the biological properties of polysaccharides, resulting in interesting properties of the derived oligosaccharides. From an analytical point of view, the impact of tautomerism on the gas-phase behavior of ions has scarcely been described in the literature. In this work, we study the behavior of Galf-containing oligosaccharides, ionized as [M+Li]+ species, under collisional dissociation (CID) conditions using high-resolution and multistage ion mobility (IMS) on a Cyclic IMS platform. In the first part of this work, we studied whether disaccharidic fragments released from Galf-containing (Gal)1(Man)2 trisaccharides (and their Galp counterpart) would match the corresponding disaccharide standards, and─despite the fragments generally being a good match─we showed the possibility of Galf migrations and other unidentified alterations in the IMS profile. Next, we expanded on these unknown features using multistage IMS and molecular dynamics, unveiling the contributions of additional gas-phase conformers in the profile of fragments from a Galf-containing trisaccharide compared with the corresponding disaccharides.


Assuntos
Carboidratos , Oligossacarídeos , Humanos , Espectrometria de Massas/métodos , Oligossacarídeos/química , Polissacarídeos , Dissacarídeos/química , Trissacarídeos , Monossacarídeos , Íons
7.
Angew Chem Int Ed Engl ; 62(17): e202300538, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36825496

RESUMO

Fucose is a ubiquitous monosaccharide associated to major classes of glycans. A main obstacle to the sequencing of fucosylated glycans is the migration of fucose, which leads to misinterpretations in mass spectrometry analysis. Here, using ion vibrational spectroscopy, we resolve the structure of fucosylated fragments of Lewis and blood group H antigen trisaccharides and we unveil the position and linkage of the fucose after migration. Our findings demonstrate that the structure of fragment ions resulting from fucose migration can be characterized. Additionally, we report a new type of fucose migration, which does not feature any change of mass and therefore had not been previously reported: it consists of a local migration where the fucose changes its position remaining on the initial residue. Our approach allows the characterization of glycans, an essential step to interpret glycomics data, as well as to understand underlying processes at play in mass spectrometry.


Assuntos
Fucose , Polissacarídeos , Fucose/química , Espectrometria de Massas , Polissacarídeos/química , Glicosilação , Íons , Oligossacarídeos/química
8.
Sci Rep ; 12(1): 13191, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915132

RESUMO

We present experiments where extreme ultraviolet femtosecond light pulses are used to photoexcite large molecular ions at high internal energy. This is done by combining an electrospray ionization source and a mass spectrometer with a pulsed light source based on high harmonic generation. This allows one to study the interaction between high energy photons and mass selected ions in conditions that are accessible on large-scale facilities. We show that even without an ion trapping device, systems as large as a protein can be studied. We observe light induced dissociative ionization and proton migration in model systems such as reserpine, insulin and cytochrome c. These results offer new perspectives to perform time-resolved experiments with ultrashort pulses at the heart of the emerging field of attosecond chemistry.


Assuntos
Fótons , Íons/química
9.
Analyst ; 147(2): 312-317, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34913933

RESUMO

Infrared vibrational spectroscopy in the gas phase has emerged as a powerful tool to determine complex molecular structures with high precision. Among the different approaches IRMPD (InfraRed multiple photon dissociation), which requires the use of an intense pulsed tuneable laser in the InfraRed (IR) domain, has been broadly applied to the study of complex (bio)molecules. Recently, it also emerged as a highly relevant approach for analytical purposes especially in the field of glycomics in which structural analysis is still a tremendous challenge. This opens the perspective to develop new analytical tools allowing for the determination of molecular structures with atomic precision, and to address advanced questions in the field. However, IRMPD experiments require non commercial equipment or/and long acquisition time which limits the data output. Here we show that it is possible to improve the IRMPD performances by optimizing the combination between a linear ion trap mass spectrometer and a high repetition tuneable laser. Two orders of magnitude are gained with this approach compared to the usual experiments ultimately leading to a completely resolved spectrum acquired in less than one minute. These results open the way to many new applications in glycomics with the possibility to include IRMPD in complex analytical workflows.


Assuntos
Glicômica , Fótons , Espectrometria de Massas , Espectrofotometria Infravermelho , Vibração
10.
Phys Chem Chem Phys ; 24(2): 1016-1022, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919629

RESUMO

O-Acetylations are functional modifications which can be found on different hydroxyl groups of glycans and which contribute to the fine tuning of their biological activity. Localizing the acetyl modifications is notoriously challenging in glycoanalysis, in particular because of their mobility: loss or migration of the acetyl group may occur through the analytical workflow. Whereas migration conditions in the condensed phase have been rationalized, little is known about the suitability of Mass Spectrometry to retain and resolve the structure of O-acetylated glycan isomers. Here we used the resolving power of infrared ion spectroscopy in combination with ab initio calculations to assess the structure of O-acetylated monosaccharide ions in the gaseous environment of a mass analyzer. N-Acetyl glucosamines were synthetized with an O-acetyl group in positions 3 or 6, respectively. The protonated ions produced by electrospray ionization were observed by mass spectrometry and their vibrational fingerprints were recorded in the 3 µm range by IRMPD spectroscopy (InfraRed Multiple Photon Dissociation). Experimentally, the isomers show distinctive IR fingerprints. Additionally, ab initio calculations confirm the position of the O-acetylation and resolve their gas phase conformation. These findings demonstrate that the position of O-acetyl groups is retained through the transfer from solution to the gas phase, and can be identified by IRMPD spectroscopy.

11.
J Am Chem Soc ; 143(28): 10509-10513, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34236183

RESUMO

Sequencing glycans is demanding due to their structural diversity. Compared to mammalian glycans, bacterial glycans pose a steeper challenge because they are constructed from a larger pool of monosaccharide building blocks, including pyranose and furanose isomers. Though mammalian glycans incorporate only the pyranose form of galactose (Galp), many pathogens, including Mycobacterium tuberculosis and Klebsiella pneumoniae, contain galactofuranose (Galf) residues in their cell envelope. Thus, glycan sequencing would benefit from methods to distinguish between pyranose and furanose isomers of different anomeric configurations. We used infrared multiple photon dissociation (IRMPD) spectroscopy with mass spectrometry (MS-IR) to differentiate between pyranose- and furanose-linked galactose residues. These targets pose a challenge for MS-IR because the saccharides lack basic groups, and galactofuranose residues are highly flexible. We postulated cationic groups that could complex through hydrogen bonding would offer a solution. Here, we present the first MS-IR analysis of hexose ammonium adducts. We compared their IR fingerprints with those of lithium adducts. We determined the diagnostic MS-IR signatures of the α- and ß-anomers of galactose in furanose and pyranose forms. We also showed these signatures could be applied to disaccharides to assign galactose ring size. Our findings highlight the utility of MS-IR for analyzing the unique substructures that occur in bacterial glycans.


Assuntos
Galactosídeos/análise , Configuração de Carboidratos , Klebsiella pneumoniae/química , Espectrometria de Massas , Mycobacterium tuberculosis/química , Espectrofotometria Infravermelho , Estereoisomerismo
12.
J Org Chem ; 86(9): 6390-6405, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33877829

RESUMO

Nature offers a huge diversity of glycosidic derivatives. Among numerous structural modulations, the nature of the ring size of hexosides may induce significant differences on both biological and physicochemical properties of the glycoconjugate of interest. On this assumption, we expect that small disaccharides bearing either a furanosyl entity or a pyranosyl residue would give a specific signature, even in the gas phase. On the basis of the scope of mass spectrometry, two analytical techniques to register those signatures were considered, i.e., the ion mobility (IM) and the infrared multiple photon dissociation (IRMPD), in order to build up cross-linked databases. d-Galactose occurs in natural products in both tautomeric forms and presents all possible regioisomers when linked to d-mannose. Consequently, the four reducing Galf-Manp disaccharides as well as the four Galp-Manp counterparts were first synthesized according to a highly convergent approach, and IM-MS and IRMPD-MS data were second collected. Both techniques used afforded signatures, specific to the nature of the connectivity between the two glycosyl entities.


Assuntos
Dissacarídeos , Galactose , Glicosídeos , Manose , Espectrometria de Massas
13.
Commun Chem ; 4(1): 124, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36697624

RESUMO

Ultrafast charge, energy and structural dynamics in molecules are driven by the topology of the multidimensional potential energy surfaces that determines the coordinated electronic and nuclear motion. These processes are also strongly influenced by the interaction with the molecular environment, making very challenging a general understanding of these dynamics on a microscopic level. Here we use electrospray and mass spectrometry technologies to produce isolated molecular ions with a controlled micro-environment. We measure ultrafast photo-induced ππ*-πσ* dynamics in tryptophan species in the presence of a single, charged adduct. A striking increase of the timescale by more than one order of magnitude is observed when changing the added adduct atom. A model is proposed to rationalize the results, based on the localized and delocalized effects of the adduct on the electronic structure of the molecule. These results offer perspectives to control ultrafast molecular processes by designing the micro-environment on the Angström length scale.

14.
Curr Opin Struct Biol ; 62: 121-131, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31981952

RESUMO

Precise structural differentiation of often isomeric glycans is important given their roles in numerous biological processes. Mass spectrometry (MS) (and tandem MS) is one of the analytical techniques at the forefront of glycan analysis given its speed, sensitivity in producing structural information as well as the fact it can be coupled to other orthogonal analytical techniques such as liquid chromatography (LC) and ion mobility spectrometry (IMS). This review describes another family of techniques that are more commonly being hybridized to MS(/MS) namely gas-phase infrared (IR) spectroscopy, whose rise is in part due to the development and improved accessibility of tunable IR lasers. Gas-phase IR can often differentiate fine isomeric differences ubiquitous within carbohydrates that MS may be 'blind' to. There are also examples of cryogenic gas-phase IR spectroscopy with much greater spectral resolution as well as hybridizing with separative methods (LC, IMS). Furthermore, collision-induced dissociation (CID) product ions can also be probed by IR, which may be beneficial to deconvolute spectra, aid analysis and build spectral libraries, thus generating novel opportunities for fragment-based approaches to analyze glycans.


Assuntos
Espectrometria de Massas/métodos , Polissacarídeos/química , Espectrofotometria Infravermelho/métodos , Isomerismo
15.
J Chromatogr A ; 1617: 460782, 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31858998

RESUMO

Glycans analysis is challenging due to their immense structural diversity. Isotachophoresis was investigated as separation method for the purification of isobaric sulfated disaccharides prior to their characterization by Mass Spectrometry (MS) and tunable IR multiple photon dissociation (IRMPD). This proof of feasibility study was applied to the separation and characterization of chondroitin sulfate (CS) disaccharides. ITP separation conditions were optimized. Separation starts using a 2.5 mM chloride ions and 10 mM glycine at pH 3.2 solution as leading electrolyte and a terminating electrolyte composed of formic acid 2.5 mM and glycine 10 mM at pH 3.5. The CS disaccharides sample were prepared in the terminating electrolyte. The length of injection was also investigated in order to create longer plateau-like bands of pure solutes. This strategy was helpful for collecting fraction at such microseparation scale. Indeed, capillary ITP affords the injection of few tens of nanoliter of sample. Fractionation of the CS disaccharides mixture in isolated ITP bands and collection of solutes were successfully done using a HPC coated fused silica capillary of 1m-length and 75 µm of internal diameter. Collected fractions in a final of volume 10 µL were analyzed by CZE, tandem MS and IRMPD spectroscopy. The purity of each fraction is higher than 90% and is well-adapted to IRMPD characterization.


Assuntos
Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Isotacoforese/métodos , Dissacarídeos/química , Dissacarídeos/isolamento & purificação , Eletrólitos , Eletroforese Capilar , Estudos de Viabilidade , Análise Espectral , Espectrometria de Massas em Tandem
16.
J Am Chem Soc ; 141(37): 14463-14479, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31403778

RESUMO

Carbohydrates possess a variety of distinct features with stereochemistry playing a particularly important role in distinguishing their structure and function. Monosaccharide building blocks are defined by a high density of chiral centers. Additionally, the anomericity and regiochemistry of the glycosidic linkages carry important biological information. Any carbohydrate-sequencing method needs to be precise in determining all aspects of this stereodiversity. Recently, several advances have been made in developing fast and precise analytical techniques that have the potential to address the stereochemical complexity of carbohydrates. This perspective seeks to provide an overview of some of these emerging techniques, focusing on those that are based on NMR and MS-hybridized technologies including ion mobility spectrometry and IR spectroscopy.


Assuntos
Carboidratos/química , Sequência de Carboidratos , Análise Espectral/métodos , Relação Estrutura-Atividade
17.
Phys Chem Chem Phys ; 21(23): 12460-12467, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31143888

RESUMO

Hexoses are mainly found in nature in the pyranose form (6-membered ring). Yet, furanose forms (5-membered ring) are observed in some rare polysaccharides. Using IRMPD spectroscopy (InfraRed Multiple Photon Dissociation), we propose a straightforward diagnostic of the ring-size of N-acetyl galactosamine ions. The furanose form of N-acetyl galactosamine was synthesized and its protonated ion was isolated in an ion trap to measure its gas phase vibrational spectrum by IRMPD. Comparison with the IRMPD spectrum of its pyranose counterpart reveals that they have distinctive optical fingerprints. This new MS-based diagnostic opens the way to facile identification of the ring-size in oligosaccharides. Our experimental data also provide new insights to support the theoretical description of the conformational behavior of the furanose ring, which is notoriously more flexible than the pyranose form but remains difficult to assess.

18.
J Phys Chem Lett ; 10(9): 2300-2305, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30999749

RESUMO

Understanding optical properties of molecular dyes is required to drive progress in molecular photonics. This requires a fundamental comprehension of the role of electronic structure, geometry, and interactions with the environment in order to guide molecular engineering strategies. In this context, we studied charged cyanine dye molecules in the gas phase with a controlled microenvironment to unravel the origin of the spectral tuning of this class of molecules. This was performed using a new approach combining femtosecond multiple-photon action spectroscopy of on-the-fly mass-selected molecular ions and high-level quantum calculations. While arguments based on molecular geometry are often used to design new polymethine dyes, we provide experimental evidence that electronic structure is of primary importance and hence the decisive criterion as suggested by recent theoretical investigations.

19.
J Phys Chem Lett ; 9(24): 6927-6933, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30444124

RESUMO

Ultrafast XUV chemistry is offering new opportunities to decipher the complex dynamics taking place in highly excited molecular states and thus better understand fundamental natural phenomena as molecule formation in interstellar media. We used ultrashort XUV light pulses to perform XUV pump-IR probe experiments in caffeine as a model of prebiotic molecule. We observed a 40 fs decay of excited cationic states. Guided by quantum calculations, this time scale is interpreted in terms of a nonadiabatic cascade through a large number of highly correlated states. This shows that the correlation driven nonadiabatic relaxation seems to be a general process for highly excited states, which might impact our understanding of molecular processing in interstellar media.

20.
Anal Chem ; 90(20): 11741-11745, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30152689

RESUMO

The vast array of molecular isomerisms which form the complex molecular structure of carbohydrates is the foundation of their biological versatility but defies the analytical chemist. Hyphenations of mass spectrometry with orthogonal structural characterization, such as ion mobility or ion spectroscopy, have recently shown great promise for distinction between closely related molecular structures. Yet, the lack of analytical strategies for identification of isomers present in mixtures remains a major obstacle to routine carbohydrate sequencing. In this context, an ideal workflow for glycomics would combine isomer separation and individual characterization of the molecular structure with atomistic resolution. Here we report the implementation of such a multidimensional analytical strategy, which consists of the first online coupling of high-performance liquid chromatography (HPLC)-MS and infrared multiple photon dissociation (IRMPD) spectroscopy. The performance of this novel workflow is exemplified in the case of monosaccharides (anomers) and disaccharides (regioisomers) standards. We report that the LC-MS-IRMPD approach offers a robust advanced MS diagnostic of mixtures of isomers, including carbohydrate anomers, which is critical for carbohydrate sequencing. Our results also explain the bimodal character generally observed in LC chromatograms of carbohydrates. More generally, this multidimensional analytical strategy opens the gateway to rapid identification of molecular isoforms with potential application in the "omics" fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA