Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
PLoS Pathog ; 19(7): e1011351, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410700

RESUMO

Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Histona Desmetilases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo
3.
mBio ; 14(2): e0362122, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36892291

RESUMO

Millions of Norway rats (Rattus norvegicus) inhabit New York City (NYC), presenting the potential for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to rats. We evaluated SARS-CoV-2 exposure among 79 rats captured from NYC during the fall of 2021. Our results showed that 13 of the 79 rats (16.5%) tested IgG- or IgM-positive, and partial SARS-CoV-2 genomes were recovered from all 4 rats that were qRT-PCR (reverse transcription-quantitative PCR)-positive. Genomic analyses suggest these viruses were associated with genetic lineage B, which was predominant in NYC in the spring of 2020 during the early pandemic period. To further investigate rat susceptibility to SARS-CoV-2 variants, we conducted a virus challenge study and showed that Alpha, Delta, and Omicron variants can cause infections in wild-type Sprague Dawley (SD) rats, including high replication levels in the upper and lower respiratory tracts and induction of both innate and adaptive immune responses. Additionally, the Delta variant resulted in the highest infectivity. In summary, our results indicate that rats are susceptible to infection with Alpha, Delta, and Omicron variants, and wild Norway rats in the NYC municipal sewer systems have been exposed to SARS-CoV-2. Our findings highlight the need for further monitoring of SARS-CoV-2 in urban rat populations and for evaluating the potential risk of secondary zoonotic transmission from these rat populations back to humans. IMPORTANCE The host tropism expansion of SARS-CoV-2 raises concern for the potential risk of reverse-zoonotic transmission of emerging variants into rodent species, including wild rat species. In this study, we present both genetic and serological evidence for SARS-CoV-2 exposure to the New York City wild rat population, and these viruses may be linked to the viruses that were circulating during the early stages of the pandemic. We also demonstrated that rats are susceptible to additional variants (i.e., Alpha, Delta, and Omicron) that have been predominant in humans and that susceptibility to infection varies by variant. Our findings highlight the reverse zoonosis of SARS-CoV-2 to urban rats and the need for further monitoring of SARS-CoV-2 in rat populations for potential secondary zoonotic transmission to humans.


Assuntos
COVID-19 , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/genética
4.
bioRxiv ; 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36451891

RESUMO

Millions of Norway rats (Rattus norvegicus) inhabit New York City (NYC), presenting the potential for transmission of SARS-CoV-2 from humans to rats and other wildlife. We evaluated SARS-CoV-2 exposure among 79 rats captured from NYC during the fall of 2021. Results showed that 13 of 79 rats (16.5%) tested IgG or IgM positive, and partial genomes of SARS-CoV-2 were recovered from four rats that were qRT-PCR positive. Using a virus challenge study, we also showed that Alpha, Delta, and Omicron variants can cause robust infections in wild-type Sprague Dawley (SD) rats, including high level replications in the upper and lower respiratory tracts and induction of both innate and adaptive immune responses. Additionally, the Delta variant resulted in the highest infectivity. In summary, our results indicated that rats are susceptible to infection with Alpha, Delta, and Omicron variants, and rats in the NYC municipal sewer systems have been exposed to SARS-CoV-2. Our findings highlight the potential risk of secondary zoonotic transmission from urban rats and the need for further monitoring of SARS-CoV-2 in those populations.

5.
J Immunol ; 209(7): 1314-1322, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165196

RESUMO

Postviral bacterial infections are a major health care challenge in coronavirus infections, including COVID-19; however, the coronavirus-specific mechanisms of increased host susceptibility to secondary infections remain unknown. In humans, coronaviruses, including SARS-CoV-2, infect lung immune cells, including alveolar macrophages, a phenotype poorly replicated in mouse models of SARS-CoV-2. To overcome this, we used a mouse model of native murine ß-coronavirus that infects both immune and structural cells to investigate coronavirus-enhanced susceptibility to bacterial infections. Our data show that coronavirus infection impairs the host ability to clear invading bacterial pathogens and potentiates lung tissue damage in mice. Mechanistically, coronavirus limits the bacterial killing ability of macrophages by impairing lysosomal acidification and fusion with engulfed bacteria. In addition, coronavirus-induced lysosomal dysfunction promotes pyroptotic cell death and the release of IL-1ß. Inhibition of cathepsin B decreased cell death and IL-1ß release and promoted bacterial clearance in mice with postcoronavirus bacterial infection.


Assuntos
Infecções Bacterianas , COVID-19 , Coinfecção , Vírus da Hepatite Murina , Animais , Bactérias , Catepsina B , Humanos , Pulmão , Lisossomos , Camundongos , SARS-CoV-2
6.
J Immunol ; 209(4): 723-730, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914834

RESUMO

Severe acute respiratory syndrome coronavirus 2, responsible for the severe acute respiratory syndrome known as COVID-19, has rapidly spread in almost every country and devastated the global economy and health care system. Lung injury is an early disease manifestation believed to be a major contributor to short- and long-term pathological consequences of COVID-19, and thus drug discovery aiming to ameliorate lung injury could be a potential strategy to treat COVID-19 patients. By inducing a severe acute respiratory syndrome-like pulmonary disease model through infecting A/J mice with murine hepatitis virus strain 1 (MHV-1), we show that i.v. administration of pazopanib ameliorates acute lung injuries without affecting MHV-1 replication. Pazopanib reduces cell apoptosis in MHV-1-infected lungs. Furthermore, we also identified that pazopanib has to be given no later than 48 h after the virus infection without compromising the therapeutic effect. Our study provides a potential treatment for coronavirus-induced lung injuries and support for further evaluation of pazopanib in COVID-19 patients.


Assuntos
Tratamento Farmacológico da COVID-19 , Lesão Pulmonar , Vírus da Hepatite Murina , Animais , Indazóis , Pulmão , Lesão Pulmonar/tratamento farmacológico , Camundongos , Pirimidinas , Sulfonamidas/uso terapêutico
7.
PNAS Nexus ; 1(3): pgac096, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35799833

RESUMO

The contours of endemic coronaviral disease in humans and other animals are shaped by the tendency of coronaviruses to generate new variants superimposed upon nonsterilizing immunity. Consequently, patterns of coronaviral reinfection in animals can inform the emerging endemic state of the SARS-CoV-2 pandemic. We generated controlled reinfection data after high and low risk natural exposure or heterologous vaccination to sialodacryoadenitis virus (SDAV) in rats. Using deterministic compartmental models, we utilized in vivo estimates from these experiments to model the combined effects of variable transmission rates, variable duration of immunity, successive waves of variants, and vaccination on patterns of viral transmission. Using rat experiment-derived estimates, an endemic state achieved by natural infection alone occurred after a median of 724 days with approximately 41.3% of the population susceptible to reinfection. After accounting for translationally altered parameters between rat-derived data and human SARS-CoV-2 transmission, and after introducing vaccination, we arrived at a median time to endemic stability of 1437 (IQR = 749.25) days with a median 15.4% of the population remaining susceptible. We extended the models to introduce successive variants with increasing transmissibility and included the effect of varying duration of immunity. As seen with endemic coronaviral infections in other animals, transmission states are altered by introduction of new variants, even with vaccination. However, vaccination combined with natural immunity maintains a lower prevalence of infection than natural infection alone and provides greater resilience against the effects of transmissible variants.

9.
J Virol ; 96(2): e0124121, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705554

RESUMO

Coronaviruses are a major health care threat to humankind. Currently, the host factors that contribute to limit disease severity in healthy young patients are not well defined. Interferons are key antiviral molecules, especially type I and type III interferons. The role of these interferons during coronavirus disease is a subject of debate. Here, using mice that are deficient in type I (IFNAR1-/-), type III (IFNLR1-/-), or both (IFNAR1/LR1-/-) interferon signaling pathways and murine-adapted coronavirus (MHV-A59) administered through the intranasal route, we define the role of interferons in coronavirus infection. We show that type I interferons play a major role in host survival in this model, while a minimal role of type III interferons was manifested only in the absence of type I interferons or during a lethal dose of coronavirus. IFNAR1-/- and IFNAR1/LR1-/- mice had an uncontrolled viral burden in the airways and lung and increased viral dissemination to other organs. The absence of only type III interferon signaling had no measurable difference in the viral load. The increased viral load in IFNAR1-/- and IFNAR1/LR1-/- mice was associated with increased tissue injury, especially evident in the lung and liver. Type I but not type III interferon treatment was able to promote survival if treated during early disease. Further, we show that type I interferon signaling in macrophages contributes to the beneficial effects during coronavirus infection in mice. IMPORTANCE The antiviral and pathological potential of type I and type III interferons during coronavirus infection remains poorly defined, and opposite findings have been reported. We report that both type I and type III interferons have anticoronaviral activities, but their potency and organ specificity differ. Type I interferon deficiency rendered the mice susceptible to even a sublethal murine coronavirus infection, while the type III interferon deficiency impaired survival only during a lethal infection or during a sublethal infection in the absence of type I interferon signaling. While treatment with both type I and III interferons promoted viral clearance in the airways and lung, only type I interferons promoted the viral clearance in the liver and improved host survival upon early treatment (12 h postinfection). This study demonstrates distinct roles and potency of type I and type III interferons and their therapeutic potential during coronavirus lung infection.


Assuntos
Infecções por Coronavirus/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Pulmão , Animais , Feminino , Pulmão/imunologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferon lambda
10.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958350

RESUMO

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats-which harbor natural rodent pathogens-are cohoused with laboratory mice. This "dirty" mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Viroses/etiologia , Viroses/transmissão , Doenças dos Animais/transmissão , Doenças dos Animais/virologia , Animais , Biomarcadores , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Camundongos , Camundongos Knockout , Interações Microbianas , Roedores , Viroses/metabolismo
11.
PLoS One ; 16(11): e0260038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34813610

RESUMO

At present, global immunity to SARS-CoV-2 resides within a heterogeneous combination of susceptible, naturally infected and vaccinated individuals. The extent to which viral shedding and transmission occurs on re-exposure to SARS-CoV-2 is an important determinant of the rate at which COVID-19 achieves endemic stability. We used Sialodacryoadenitis Virus (SDAV) in rats to model the extent to which immune protection afforded by prior natural infection via high risk (inoculation; direct contact) or low risk (fomite) exposure, or by vaccination, influenced viral shedding and transmission on re-exposure. On initial infection, we confirmed that amount, duration and consistency of viral shedding, and seroconversion rates were correlated with exposure risk. Animals were reinfected after 3.7-5.5 months using the same exposure paradigm. 59% of seropositive animals shed virus, although at lower amounts. Previously exposed seropositive reinfected animals were able to transmit virus to 25% of naive recipient rats after 24-hour exposure by direct contact. Rats vaccinated intranasally with a related virus (Parker's Rat Coronavirus) were able to transmit SDAV to only 4.7% of naive animals after a 7-day direct contact exposure, despite comparable viral shedding. Cycle threshold values associated with transmission in both groups ranged from 29-36 cycles. Observed shedding was not a prerequisite for transmission. Results indicate that low-level shedding in both naturally infected and vaccinated seropositive animals can propagate infection in susceptible individuals. Extrapolated to COVID-19, our results suggest that continued propagation of SARS-CoV-2 by seropositive previously infected or vaccinated individuals is possible.


Assuntos
COVID-19/transmissão , Infecções por Coronaviridae/veterinária , Coronavirus do Rato/fisiologia , Modelos Biológicos , Modelos Estatísticos , Doenças dos Roedores/transmissão , Eliminação de Partículas Virais , Animais , COVID-19/virologia , Infecções por Coronaviridae/transmissão , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , SARS-CoV-2/fisiologia , Soroconversão
12.
Comp Med ; 71(5): 333-341, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34412731

RESUMO

Coronaviruses infect humans and a wide range of animals, causing predominantly respiratory and intestinal infections. This review provides background on the taxonomy of coronaviruses, the functions of viral proteins, and the life cycle of coronaviruses. In addition, the review focuses on coronaviral diseases in several agriculturally important, companion, and laboratory animal species (cats, cattle, chickens, dogs, mice, rats and swine) and briefly reviews human coronaviruses and their origins.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Gatos , Bovinos , Galinhas , Infecções por Coronavirus/veterinária , Cães , Camundongos , Ratos , Suínos
14.
ILAR J ; 62(1-2): 35-47, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33836527

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic has fueled unprecedented development of animal models to understand disease pathogenesis, test therapeutics, and support vaccine development. Models previously developed to study severe acute respiratory syndrome coronavirus (SARS-CoV) have been rapidly deployed to study SARS-CoV-2. However, it has become clear that despite the common use of ACE2 as a receptor for both viruses, the host range of the 2 viruses does not entirely overlap. Distinct ACE2-interacting residues within the receptor binding domain of SARS-CoV and SARS-CoV-2, as well as species differences in additional proteases needed for activation and internalization of the virus, are likely sources of host differences between the 2 viruses. Spontaneous models include rhesus and cynomolgus macaques, African Green monkeys, hamsters, and ferrets. Viral shedding and transmission studies are more frequently reported in spontaneous models. Mice can be infected with SARS-CoV; however, mouse and rat ACE2 does not support SARS-CoV-2 infection. Murine models for COVID-19 are induced through genetic adaptation of SARS-CoV-2, creation of chimeric SARS-CoV and SARS-CoV-2 viruses, use of human ACE2 knock-in and transgenic mice, and viral transfection of wild-type mice with human ACE2. Core aspects of COVID-19 are faithfully reproduced across species and model. These include the acute nature and predominantly respiratory source of viral shedding, acute transient and nonfatal disease with a largely pulmonary phenotype, similar short-term immune responses, and age-enhanced disease. Severity of disease and tissue involvement (particularly brain) in transgenic mice varies by promoter. To date, these models have provided a remarkably consistent template on which to test therapeutics, understand immune responses, and test vaccine approaches. The role of comorbidity in disease severity and the range of severe organ-specific pathology in humans remains to be accurately modeled.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Enzima de Conversão de Angiotensina 2 , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Furões/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ratos , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2
16.
Comp Med ; 70(4): 390-395, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32736665

RESUMO

Immunodeficient rats are valuable in transplantation studies, but are vulnerable to infection from opportunistic organisms such as fungi. Immunodeficient Rag1- and Il2rg-deficient (RRG) rats housed at our institution presented with dark, proliferative, keratinized dermal growths. Histologic and PCR results indicated that the predominant organism associated with these lesions was fungus from the family Mucoraceae, mostly of the genus Rhizopus. The Mucoraceae family of fungi are environmental saprophytes and are often found in rodent bedding. These fungi can cause invasive opportunistic infections in immunosuppressed humans and animals. We discuss husbandry practices for immunosuppressed rodents with a focus on controlling fungal contaminants.


Assuntos
Mucormicose/veterinária , Infecções Oportunistas/veterinária , Animais , Feminino , Abrigo para Animais/normas , Imunocompetência , Masculino , Mucormicose/diagnóstico , Ratos , Doenças dos Roedores/diagnóstico
17.
J Am Assoc Lab Anim Sci ; 59(5): 458-468, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32580820

RESUMO

Molecular diagnostics (PCR and RT-PCR) have become commonplace in laboratory animal research and diagnostics, augmenting or replacing serological and microbiologic methods. This overview will discuss the uses of molecular diagnostics in the diagnosis of pathogenic infections of laboratory animals and in monitoring the microbial status of laboratory animals and their environment. The article will focus primarily on laboratory rodents, although PCR can be used on samples from any laboratory animal species.


Assuntos
Animais de Laboratório , Doenças Transmissíveis/veterinária , Reação em Cadeia da Polimerase/veterinária , Criação de Animais Domésticos , Animais , Doenças Transmissíveis/diagnóstico , Humanos , Ciência dos Animais de Laboratório , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças dos Roedores/diagnóstico , Doenças dos Roedores/microbiologia , Roedores , Sensibilidade e Especificidade
19.
Comp Med ; 70(2): 105-110, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32220261
20.
J Med Primatol ; 49(2): 103-106, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31789460

RESUMO

A 16-year-old rhesus macaque presented with progressive, ascending quadriparesis following measles vaccination. He was diagnosed with transverse myelitis following MRI, gross necropsy, and histopathology. This is the first report of transverse myelitis in a rhesus macaque following measles vaccination.


Assuntos
Macaca mulatta , Vacina contra Sarampo/efeitos adversos , Doenças dos Macacos/diagnóstico , Mielite Transversa/veterinária , Vacinação/efeitos adversos , Animais , Masculino , Sarampo/terapia , Vacina contra Sarampo/administração & dosagem , Doenças dos Macacos/etiologia , Mielite Transversa/diagnóstico , Mielite Transversa/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...