Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Neuroimage ; 290: 120569, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38461959

RESUMO

Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) both measure the hemodynamic response, and so both imaging modalities are expected to have a strong correspondence in regions of cortex adjacent to the scalp. To assess whether fNIRS can be used clinically in a manner similar to fMRI, 22 healthy adult participants underwent same-day fMRI and whole-head fNIRS testing while they performed separate motor (finger tapping) and visual (flashing checkerboard) tasks. Analyses were conducted within and across subjects for each imaging approach, and regions of significant task-related activity were compared on the cortical surface. The spatial correspondence between fNIRS and fMRI detection of task-related activity was good in terms of true positive rate, with fNIRS overlap of up to 68 % of the fMRI for analyses across subjects (group analysis) and an average overlap of up to 47.25 % for individual analyses within subject. At the group level, the positive predictive value of fNIRS was 51 % relative to fMRI. The positive predictive value for within subject analyses was lower (41.5 %), reflecting the presence of significant fNIRS activity in regions without significant fMRI activity. This could reflect task-correlated sources of physiologic noise and/or differences in the sensitivity of fNIRS and fMRI measures to changes in separate (vs. combined) measures of oxy and de-oxyhemoglobin. The results suggest whole-head fNIRS as a noninvasive imaging modality with promising clinical utility for the functional assessment of brain activity in superficial regions of cortex physically adjacent to the skull.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Hemodinâmica/fisiologia , Crânio
2.
Ann Clin Transl Neurol ; 10(11): 2149-2154, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872734

RESUMO

Short-range functional connectivity in the limbic network is increased in patients with temporal lobe epilepsy (TLE), and recent studies have shown that cortical myelin content correlates with fMRI connectivity. We thus hypothesized that myelin may increase progressively in the epileptic network. We compared T1w/T2w gray matter myelin maps between TLE patients and age-matched controls and assessed relationships between myelin and aging. While both TLE patients and healthy controls exhibited increased T1w/T2w intensity with age, we found no evidence for significant group-level aberrations in overall myelin content or myelin changes through time in TLE.


Assuntos
Epilepsia do Lobo Temporal , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Epilepsia do Lobo Temporal/diagnóstico por imagem , Envelhecimento , Imageamento por Ressonância Magnética , Bainha de Mielina
3.
Epilepsia ; 64(9): 2484-2498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376741

RESUMO

OBJECTIVE: Social determinants of health, including the effects of neighborhood disadvantage, impact epilepsy prevalence, treatment, and outcomes. This study characterized the association between aberrant white matter connectivity in temporal lobe epilepsy (TLE) and disadvantage using a US census-based neighborhood disadvantage metric, the Area Deprivation Index (ADI), derived from measures of income, education, employment, and housing quality. METHODS: Participants including 74 TLE patients (47 male, mean age = 39.2 years) and 45 healthy controls (27 male, mean age = 31.9 years) from the Epilepsy Connectome Project were classified into ADI-defined low and high disadvantage groups. Graph theoretic metrics were applied to multishell connectome diffusion-weighted imaging (DWI) measurements to derive 162 × 162 structural connectivity matrices (SCMs). The SCMs were harmonized using neuroCombat to account for interscanner differences. Threshold-free network-based statistics were used for analysis, and findings were correlated with ADI quintile metrics. A decrease in cross-sectional area (CSA) indicates reduced white matter integrity. RESULTS: Sex- and age-adjusted CSA in TLE groups was significantly reduced compared to controls regardless of disadvantage status, revealing discrete aberrant white matter tract connectivity abnormalities in addition to apparent differences in graph measures of connectivity and network-based statistics. When comparing broadly defined disadvantaged TLE groups, differences were at trend level. Sensitivity analyses of ADI quintile extremes revealed significantly lower CSA in the most compared to least disadvantaged TLE group. SIGNIFICANCE: Our findings demonstrate (1) the general impact of TLE on DWI connectome status is larger than the association with neighborhood disadvantage; however, (2) neighborhood disadvantage, indexed by ADI, revealed modest relationships with white matter structure and integrity on sensitivity analysis in TLE. Further studies are needed to explore this relationship and determine whether the white matter relationship with ADI is driven by social drift or environmental influences on brain development. Understanding the etiology and course of the disadvantage-brain integrity relationship may serve to inform care, management, and policy for patients.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Substância Branca , Humanos , Masculino , Adulto , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/epidemiologia , Conectoma/métodos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem
4.
Cereb Cortex ; 33(12): 8056-8065, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37067514

RESUMO

Temporal lobe epilepsy (TLE) is the most common epilepsy syndrome that empirically represents a network disorder, which makes graph theory (GT) a practical approach to understand it. Multi-shell diffusion-weighted imaging (DWI) was obtained from 89 TLE and 50 controls. GT measures extracted from harmonized DWI matrices were used as factors in a support vector machine (SVM) analysis to discriminate between groups, and in a k-means algorithm to find intrinsic structural phenotypes within TLE. SVM was able to predict group membership (mean accuracy = 0.70, area under the curve (AUC) = 0.747, Brier score (BS) = 0.264) using 10-fold cross-validation. In addition, k-means clustering identified 2 TLE clusters: 1 similar to controls, and 1 dissimilar. Clusters were significantly different in their distribution of cognitive phenotypes, with the Dissimilar cluster containing the majority of TLE with cognitive impairment (χ2 = 6.641, P = 0.036). In addition, cluster membership showed significant correlations between GT measures and clinical variables. Given that SVM classification seemed driven by the Dissimilar cluster, SVM analysis was repeated to classify Dissimilar versus Similar + Controls with a mean accuracy of 0.91 (AUC = 0.957, BS = 0.189). Altogether, the pattern of results shows that GT measures based on connectome DWI could be significant factors in the search for clinical and neurobehavioral biomarkers in TLE.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética , Cognição , Imageamento por Ressonância Magnética/métodos
5.
Brain Commun ; 5(2): fcad095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038499

RESUMO

The relationship between temporal lobe epilepsy and psychopathology has had a long and contentious history with diverse views regarding the presence, nature and severity of emotional-behavioural problems in this patient population. To address these controversies, we take a new person-centred approach through the application of unsupervised machine learning techniques to identify underlying latent groups or behavioural phenotypes. Addressed are the distinct psychopathological profiles, their linked frequency, patterns and severity and the disruptions in morphological and network properties that underlie the identified latent groups. A total of 114 patients and 83 controls from the Epilepsy Connectome Project were administered the Achenbach System of Empirically Based Assessment inventory from which six Diagnostic and Statistical Manual of Mental Disorders-oriented scales were analysed by unsupervised machine learning analytics to identify latent patient groups. Identified clusters were contrasted to controls as well as to each other in order to characterize their association with sociodemographic, clinical epilepsy and morphological and functional imaging network features. The concurrent validity of the behavioural phenotypes was examined through other measures of behaviour and quality of life. Patients overall exhibited significantly higher (abnormal) scores compared with controls. However, cluster analysis identified three latent groups: (i) unaffected, with no scale elevations compared with controls (Cluster 1, 37%); (ii) mild symptomatology characterized by significant elevations across several Diagnostic and Statistical Manual of Mental Disorders-oriented scales compared with controls (Cluster 2, 42%); and (iii) severe symptomatology with significant elevations across all scales compared with controls and the other temporal lobe epilepsy behaviour phenotype groups (Cluster 3, 21%). Concurrent validity of the behavioural phenotype grouping was demonstrated through identical stepwise links to abnormalities on independent measures including the National Institutes of Health Toolbox Emotion Battery and quality of life metrics. There were significant associations between cluster membership and sociodemographic (handedness and education), cognition (processing speed), clinical epilepsy (presence and lifetime number of tonic-clonic seizures) and neuroimaging characteristics (cortical volume and thickness and global graph theory metrics of morphology and resting-state functional MRI). Increasingly dispersed volumetric abnormalities and widespread disruptions in underlying network properties were associated with the most abnormal behavioural phenotype. Psychopathology in these patients is characterized by a series of discrete latent groups that harbour accompanying sociodemographic, clinical and neuroimaging correlates. The underlying neurobiological patterns suggest that the degree of psychopathology is linked to increasingly dispersed abnormal brain networks. Similar to cognition, machine learning approaches support a novel developing taxonomy of the comorbidities of epilepsy.

6.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993310

RESUMO

The organization of semantic memory, including memory for word meanings, has long been a central question in cognitive science. Although there is general agreement that word meaning representations must make contact with sensory-motor and affective experiences in a non-arbitrary fashion, the nature of this relationship remains controversial. One prominent view proposes that word meanings are represented directly in terms of their experiential content (i.e., sensory-motor and affective representations). Opponents of this view argue that the representation of word meanings reflects primarily taxonomic structure, that is, their relationships to natural categories. In addition, the recent success of language models based on word co-occurrence (i.e., distributional) information in emulating human linguistic behavior has led to proposals that this kind of information may play an important role in the representation of lexical concepts. We used a semantic priming paradigm designed for representational similarity analysis (RSA) to quantitatively assess how well each of these theories explains the representational similarity pattern for a large set of words. Crucially, we used partial correlation RSA to account for intercorrelations between model predictions, which allowed us to assess, for the first time, the unique effect of each model. Semantic priming was driven primarily by experiential similarity between prime and target, with no evidence of an independent effect of distributional or taxonomic similarity. Furthermore, only the experiential models accounted for unique variance in priming after partialling out explicit similarity ratings. These results support experiential accounts of semantic representation and indicate that, despite their good performance at some linguistic tasks, the distributional models evaluated here do not encode the same kind of information used by the human semantic system.

7.
Neuroimage ; 264: 119749, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379420

RESUMO

PET and fMRI studies suggest that auditory narrative comprehension is supported by a bilateral multilobar cortical network. The superior temporal resolution of magnetoencephalography (MEG) makes it an attractive tool to investigate the dynamics of how different neuroanatomic substrates engage during narrative comprehension. Using beta-band power changes as a marker of cortical engagement, we studied MEG responses during an auditory story comprehension task in 31 healthy adults. The protocol consisted of two runs, each interleaving 7 blocks of the story comprehension task with 15 blocks of an auditorily presented math task as a control for phonological processing, working memory, and attention processes. Sources at the cortical surface were estimated with a frequency-resolved beamformer. Beta-band power was estimated in the frequency range of 16-24 Hz over 1-sec epochs starting from 400 msec after stimulus onset until the end of a story or math problem presentation. These power estimates were compared to 1-second epochs of data before the stimulus block onset. The task-related cortical engagement was inferred from beta-band power decrements. Group-level source activations were statistically compared using non-parametric permutation testing. A story-math contrast of beta-band power changes showed greater bilateral cortical engagement within the fusiform gyrus, inferior and middle temporal gyri, parahippocampal gyrus, and left inferior frontal gyrus (IFG) during story comprehension. A math-story contrast of beta power decrements showed greater bilateral but left-lateralized engagement of the middle frontal gyrus and superior parietal lobule. The evolution of cortical engagement during five temporal windows across the presentation of stories showed significant involvement during the first interval of the narrative of bilateral opercular and insular regions as well as the ventral and lateral temporal cortex, extending more posteriorly on the left and medially on the right. Over time, there continued to be sustained right anterior ventral temporal engagement, with increasing involvement of the right anterior parahippocampal gyrus, STG, MTG, posterior superior temporal sulcus, inferior parietal lobule, frontal operculum, and insula, while left hemisphere engagement decreased. Our findings are consistent with prior imaging studies of narrative comprehension, but in addition, they demonstrate increasing right-lateralized engagement over the course of narratives, suggesting an important role for these right-hemispheric regions in semantic integration as well as social and pragmatic inference processing.


Assuntos
Mapeamento Encefálico , Compreensão , Adulto , Humanos , Mapeamento Encefálico/métodos , Compreensão/fisiologia , Magnetoencefalografia , Imageamento por Ressonância Magnética , Lobo Temporal
8.
J Neurosci ; 42(37): 7121-7130, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35940877

RESUMO

Neuroimaging, neuropsychological, and psychophysical evidence indicate that concept retrieval selectively engages specific sensory and motor brain systems involved in the acquisition of the retrieved concept. However, it remains unclear which supramodal cortical regions contribute to this process and what kind of information they represent. Here, we used representational similarity analysis of two large fMRI datasets with a searchlight approach to generate a detailed map of human brain regions where the semantic similarity structure across individual lexical concepts can be reliably detected. We hypothesized that heteromodal cortical areas typically associated with the default mode network encode multimodal experiential information about concepts, consistent with their proposed role as cortical integration hubs. In two studies involving different sets of concepts and different participants (both sexes), we found a distributed, bihemispheric network engaged in concept representation, composed of high-level association areas in the anterior, lateral, and ventral temporal lobe; inferior parietal lobule; posterior cingulate gyrus and precuneus; and medial, dorsal, ventrolateral, and orbital prefrontal cortex. In both studies, a multimodal model combining sensory, motor, affective, and other types of experiential information explained significant variance in the neural similarity structure observed in these regions that was not explained by unimodal experiential models or by distributional semantics (i.e., word2vec similarity). These results indicate that during concept retrieval, lexical concepts are represented across a vast expanse of high-level cortical regions, especially in the areas that make up the default mode network, and that these regions encode multimodal experiential information.SIGNIFICANCE STATEMENT Conceptual knowledge includes information acquired through various modalities of experience, such as visual, auditory, tactile, and emotional information. We investigated which brain regions encode mental representations that combine information from multiple modalities when participants think about the meaning of a word. We found that such representations are encoded across a widely distributed network of cortical areas in both hemispheres, including temporal, parietal, limbic, and prefrontal association areas. Several areas not traditionally associated with semantic cognition were also implicated. Our results indicate that the retrieval of conceptual knowledge during word comprehension relies on a much larger portion of the cerebral cortex than previously thought and that multimodal experiential information is represented throughout the entire network.


Assuntos
Mapeamento Encefálico , Semântica , Compreensão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal
9.
Sci Rep ; 12(1): 14407, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002603

RESUMO

Machine learning analyses were performed on graph theory (GT) metrics extracted from brain functional and morphological data from temporal lobe epilepsy (TLE) patients in order to identify intrinsic network phenotypes and characterize their clinical significance. Participants were 97 TLE and 36 healthy controls from the Epilepsy Connectome Project. Each imaging modality (i.e., Resting-state functional Magnetic Resonance Imaging (RS-fMRI), and structural MRI) rendered 2 clusters: one comparable to controls and one deviating from controls. Participants were minimally overlapping across the identified clusters, suggesting that an abnormal functional GT phenotype did not necessarily mean an abnormal morphological GT phenotype for the same subject. Morphological clusters were associated with a significant difference in the estimated lifetime number of generalized tonic-clonic seizures and functional cluster membership was associated with age. Furthermore, controls exhibited significant correlations between functional GT metrics and cognition, while for TLE participants morphological GT metrics were linked to cognition, suggesting a dissociation between higher cognitive abilities and GT-derived network measures. Overall, these findings demonstrate the existence of clinically meaningful minimally overlapping phenotypes of morphological and functional GT networks. Functional network properties may underlie variance in cognition in healthy brains, but in the pathological state of epilepsy the cognitive limits might be primarily related to structural cerebral network properties.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Fenótipo
10.
Neurology ; 98(23): e2337-e2346, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35410903

RESUMO

BACKGROUND AND OBJECTIVES: Naming decline after left temporal lobe epilepsy (TLE) surgery is common and difficult to predict. Preoperative language fMRI may predict naming decline, but this application is still lacking evidence. We performed a large multicenter cohort study of the effectiveness of fMRI in predicting naming deficits after left TLE surgery. METHODS: At 10 US epilepsy centers, 81 patients with left TLE were prospectively recruited and given the Boston Naming Test (BNT) before and ≈7 months after anterior temporal lobectomy. An fMRI language laterality index (LI) was measured with an auditory semantic decision-tone decision task contrast. Correlations and a multiple regression model were built with a priori chosen predictors. RESULTS: Naming decline occurred in 56% of patients and correlated with fMRI LI (r = -0.41, p < 0.001), age at epilepsy onset (r = -0.30, p = 0.006), age at surgery (r = -0.23, p = 0.039), and years of education (r = 0.24, p = 0.032). Preoperative BNT score and duration of epilepsy were not correlated with naming decline. The regression model explained 31% of the variance, with fMRI contributing 14%, with a 96% sensitivity and 44% specificity for predicting meaningful naming decline. Cross-validation resulted in an average prediction error of 6 points. DISCUSSION: An fMRI-based regression model predicted naming outcome after left TLE surgery in a large, prospective multicenter sample, with fMRI as the strongest predictor. These results provide evidence supporting the use of preoperative language fMRI to predict language outcome in patients undergoing left TLE surgery. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that fMRI language lateralization can help in predicting naming decline after left TLE surgery.


Assuntos
Epilepsia do Lobo Temporal , Idioma , Mapeamento Encefálico/métodos , Estudos de Coortes , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos
11.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115397

RESUMO

The nature of the representational code underlying conceptual knowledge remains a major unsolved problem in cognitive neuroscience. We assessed the extent to which different representational systems contribute to the instantiation of lexical concepts in high-level, heteromodal cortical areas previously associated with semantic cognition. We found that lexical semantic information can be reliably decoded from a wide range of heteromodal cortical areas in the frontal, parietal, and temporal cortex. In most of these areas, we found a striking advantage for experience-based representational structures (i.e., encoding information about sensory-motor, affective, and other features of phenomenal experience), with little evidence for independent taxonomic or distributional organization. These results were found independently for object and event concepts. Our findings indicate that concept representations in the heteromodal cortex are based, at least in part, on experiential information. They also reveal that, in most heteromodal areas, event concepts have more heterogeneous representations (i.e., they are more easily decodable) than object concepts and that other areas beyond the traditional "semantic hubs" contribute to semantic cognition, particularly the posterior cingulate gyrus and the precuneus.


Assuntos
Formação de Conceito/fisiologia , Lobo Temporal/fisiologia , Adulto , Mapeamento Encefálico/métodos , Cognição/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Lobo Parietal/fisiologia , Semântica , Adulto Jovem
12.
Pediatr Neurol ; 122: 68-75, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34301451

RESUMO

BACKGROUND: Changes in cerebral blood flow in response to neuronal activation can be measured by time-dependent fluctuations in hemoglobin species within the brain; this is the basis of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). There is a clinical need for portable neural imaging systems, such as fNIRS, to accommodate patients who are unable to tolerate an MR environment. OBJECTIVE: Our objective was to compare task-related full-head fNIRS and fMRI signals across cortical regions. METHODS: Eighteen healthy adults completed a same-day fNIRS-fMRI study, in which they performed right- and left-hand finger tapping tasks and a semantic-decision tones-decision task. First- and second-level general linear models were applied to both datasets. RESULTS: The finger tapping task showed that significant fNIRS channel activity over the contralateral primary motor cortex corresponded to surface fMRI activity. Similarly, significant fNIRS channel activity over the bilateral temporal lobe corresponded to the same primary auditory regions as surface fMRI during the semantic-decision tones-decision task. Additional channels were significant for this task that did not correspond to surface fMRI activity. CONCLUSION: Although both imaging modalities showed left-lateralized activation for language processing, the current fNIRS analysis did not show concordant or expected localization at the level necessary for clinical use in individual pediatric epileptic patients. Future work is needed to show whether fNIRS and fMRI are comparable at the source level so that fNIRS can be used in a clinical setting on individual patients. If comparable, such an imaging approach could be applied to children with neurological disorders.


Assuntos
Mapeamento Encefálico/normas , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/normas , Espectroscopia de Luz Próxima ao Infravermelho/normas , Adulto , Congressos como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurologia/métodos , Neurologia/normas , Pediatria/métodos , Pediatria/normas , Adulto Jovem
13.
Cortex ; 141: 55-65, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029858

RESUMO

PURPOSE: The neuropsychological complications of temporal lobe epilepsy are characterized by a spectrum of reproducible cognitive phenotypes that vary in the presence, type and degree of impairment. The nature of the disruptions to the neuropsychological networks that underlie these phenotypes remain to be characterized and represent the subject of this investigation. METHODS: Participants included 30 healthy controls and 104 patients with temporal lobe epilepsy who fell into three cognitive phenotypes (intact, focal impairment, generalized impairment). Eighteen neuropsychological measures representing multiple cognitive domains (language, memory, executive function, visuoperception, motor speed) were examined by graph theory techniques within the control and each epilepsy cognitive phenotype group to characterize their global and local network properties. RESULTS: Across the control and epilepsy cognitive phenotype groups (intact to focal to generalized impairment), there was: 1) an orderly breakdown in the positive manifold reflected by a stepwise reduction of positive associations among the neuropsychological tests, 2) stepwise abnormal increases in global measures including the normalized clustering coefficient and modularity index, 3) stepwise abnormal decreases in normalized global efficiency, 4) a community structure demonstrating well organized modules within the control group while each epilepsy group showed deviations from controls, and 5) lower strength, compared to controls, across 8 nodes in the focal and generalized impairment groups compared to only 3 nodes in the no-impairment epilepsy group, pointing to the superior integration of local connections in controls. DISCUSSION: The cognitive phenotypes of temporal lobe epilepsy are characterized by orderly abnormalities in their underlying neuropsychological networks. These findings inform the network perturbations that underlie the taxonomy of cognitive abnormality in temporal lobe epilepsy and provide a model for examination of similar issues in other focal and generalized epilepsies.


Assuntos
Epilepsia do Lobo Temporal , Cognição , Função Executiva , Humanos , Testes Neuropsicológicos , Fenótipo
14.
J Neurosci ; 41(18): 4100-4119, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33753548

RESUMO

Understanding how and where in the brain sentence-level meaning is constructed from words presents a major scientific challenge. Recent advances have begun to explain brain activation elicited by sentences using vector models of word meaning derived from patterns of word co-occurrence in text corpora. These studies have helped map out semantic representation across a distributed brain network spanning temporal, parietal, and frontal cortex. However, it remains unclear whether activation patterns within regions reflect unified representations of sentence-level meaning, as opposed to superpositions of context-independent component words. This is because models have typically represented sentences as "bags-of-words" that neglect sentence-level structure. To address this issue, we interrogated fMRI activation elicited as 240 sentences were read by 14 participants (9 female, 5 male), using sentences encoded by a recurrent deep artificial neural-network trained on a sentence inference task (InferSent). Recurrent connections and nonlinear filters enable InferSent to transform sequences of word vectors into unified "propositional" sentence representations suitable for evaluating intersentence entailment relations. Using voxelwise encoding modeling, we demonstrate that InferSent predicts elements of fMRI activation that cannot be predicted by bag-of-words models and sentence models using grammatical rules to assemble word vectors. This effect occurs throughout a distributed network, which suggests that propositional sentence-level meaning is represented within and across multiple cortical regions rather than at any single site. In follow-up analyses, we place results in the context of other deep network approaches (ELMo and BERT) and estimate the degree of unpredicted neural signal using an "experiential" semantic model and cross-participant encoding.SIGNIFICANCE STATEMENT A modern-day scientific challenge is to understand how the human brain transforms word sequences into representations of sentence meaning. A recent approach, emerging from advances in functional neuroimaging, big data, and machine learning, is to computationally model meaning, and use models to predict brain activity. Such models have helped map a cortical semantic information-processing network. However, how unified sentence-level information, as opposed to word-level units, is represented throughout this network remains unclear. This is because models have typically represented sentences as unordered "bags-of-words." Using a deep artificial neural network that recurrently and nonlinearly combines word representations into unified propositional sentence representations, we provide evidence that sentence-level information is encoded throughout a cortical network, rather than in a single region.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Compreensão/fisiologia , Idioma , Redes Neurais de Computação , Semântica , Adulto , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Leitura , Adulto Jovem
15.
Epilepsy Behav ; 117: 107841, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33611101

RESUMO

Temporal lobe epilepsy (TLE) has been conceptualized as focal disease with a discrete neurobiological focus and can respond well to targeted resection or ablation. In contrast, the neuro-cognitive deficits resulting from TLE can be widespread involving regions beyond the primary epileptic network. We hypothesize that this seemingly paradoxical findings can be explained by differences in connectivity between the primary epileptic region which is hyper-connected and its secondary influence on global connectome organization. This hypothesis is tested using regional and global graph theory metrics where we anticipate that regional mesial-temporal hyperconnectivity will be found and correlate with seizure frequency while global networks will be disorganized and be more closely associated with neuro-cognitive deficits. Resting-state fMRI was used to examine temporal lobe regional connectivity and global functional connectivity from 102 patients with TLE and 55 controls. Connectivity matrices were calculated for subcortical volumes and cortical parcellations. Graph theory metrics (global clustering coefficient (GCC), degree, closeness) were compared between groups and in relation to neuropsychological profiles and disease covariates using permutation testing and causal analysis. In TLE there was a decrease in GCC (p = 0.0345) associated with a worse neuropsychological profile (p = 0.0134). There was increased connectivity in the left hippocampus/amygdala (degree p = 0.0103, closeness p = 0.0104) and a decrease in connectivity in the right lateral temporal lobe (degree p = 0.0186, closeness p = 0.0122). A ratio between the hippocampus/amygdala and lateral temporal lobe-temporal lobe connectivity ratio (TLCR) revealed differences between TLE and controls for closeness (left p = 0.00149, right p = 0.0494) and for degree on left p = 0.00169; with trend on right p = 0.0567. Causal analysis suggested that "Epilepsy Activity" (seizure frequency, anti-seizure medications) was associated with increase in TLCR but not in GCC, while cognitive decline was associated with decreased GCC. These findings support the hypothesis that in TLE there is hyperconnectivity in the hippocampus/amygdala and hypoconnectivity in the lateral temporal lobe associated with "Epilepsy Activity." While, global connectome disorganization was associated with worse neuropsychological phenotype.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Epilepsia do Lobo Temporal/diagnóstico por imagem , Lateralidade Funcional , Hipocampo , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Lobo Temporal
16.
Neuroimage Clin ; 28: 102443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33027702

RESUMO

Previous studies examining the resting-state functional connectivity of the periaqueductal gray (PAG) in chronic visceral pain have localized PAG coordinates derived from BOLD responses to provoked acute pain. These coordinates appear to be several millimeters anterior of the anatomical location of the PAG. Therefore, we aimed to determine whether measures of PAG functional connectivity are sensitive to the localization technique, and if the localization approach has an impact on detecting disease-related differences in chronic visceral pain patients. We examined structural and resting-state functional MRI (rs-fMRI) images from 209 participants in the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. We applied three different localization techniques to define a region-of-interest (ROI) for the PAG: 1) a ROI previously-published as a Montreal Neurological Institute (MNI) coordinate surrounded by a 3 mm radius sphere (MNI-sphere), 2) a ROI that was hand-traced over the PAG in a MNI template brain (MNI-trace), and 3) a ROI that was hand-drawn over the PAG in structural images from 30 individual participants (participant-trace). We compared the correlation among the rs-fMRI signals from these PAG ROIs, as well as the functional connectivity of these ROIs with the whole brain. First, we found important non-uniformities in brainstem rs-fMRI signals, as rs-fMRI signals from the MNI-trace ROI were significantly more similar to the participant-trace ROI than to the MNI-sphere ROI. We then found that choice of ROI also impacts whole-brain functional connectivity, as measures of PAG functional connectivity throughout the brain were more similar between MNI-trace and participant-trace compared to MNI-sphere and participant-trace. Finally, we found that ROI choice impacts detection of disease-related differences, as functional connectivity differences between pelvic pain patients and healthy controls were much more apparent using the MNI-trace ROI compared to the MNI-sphere ROI. These results indicate that the ROI used to localize the PAG is critical, especially when examining brain functional connectivity changes in chronic visceral pain patients.


Assuntos
Substância Cinzenta Periaquedutal , Dor Visceral , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Neuroimagem , Substância Cinzenta Periaquedutal/diagnóstico por imagem
17.
Front Neurosci ; 14: 724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742257

RESUMO

Similar to functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) detects the changes of hemoglobin species inside the brain, but via differences in optical absorption. Within the near-infrared spectrum, light can penetrate biological tissues and be absorbed by chromophores, such as oxyhemoglobin and deoxyhemoglobin. What makes fNIRS more advantageous is its portability and potential for long-term monitoring. This paper reviews the basic mechanisms of fNIRS and its current clinical applications, the limitations toward more widespread clinical usage of fNIRS, and current efforts to improve the temporal and spatial resolution of fNIRS toward robust clinical usage within subjects. Oligochannel fNIRS is adequate for estimating global cerebral function and it has become an important tool in the critical care setting for evaluating cerebral oxygenation and autoregulation in patients with stroke and traumatic brain injury. When it comes to a more sophisticated utilization, spatial and temporal resolution becomes critical. Multichannel NIRS has improved the spatial resolution of fNIRS for brain mapping in certain task modalities, such as language mapping. However, averaging and group analysis are currently required, limiting its clinical use for monitoring and real-time event detection in individual subjects. Advances in signal processing have moved fNIRS toward individual clinical use for detecting certain types of seizures, assessing autonomic function and cortical spreading depression. However, its lack of accuracy and precision has been the major obstacle toward more sophisticated clinical use of fNIRS. The use of high-density whole head optode arrays, precise sensor locations relative to the head, anatomical co-registration, short-distance channels, and multi-dimensional signal processing can be combined to improve the sensitivity of fNIRS and increase its use as a wide-spread clinical tool for the robust assessment of brain function.

18.
Epilepsia ; 61(9): 1939-1948, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32780878

RESUMO

OBJECTIVE: To define left temporal lobe regions where surgical resection produces a persistent postoperative decline in naming visual objects. METHODS: Pre- and postoperative brain magnetic resonance imaging data and picture naming (Boston Naming Test) scores were obtained prospectively from 59 people with drug-resistant left temporal lobe epilepsy. All patients had left hemisphere language dominance at baseline and underwent surgical resection or ablation in the left temporal lobe. Postoperative naming assessment occurred approximately 7 months after surgery. Surgical lesions were mapped to a standard template, and the relationship between presence or absence of a lesion and the degree of naming decline was tested at each template voxel while controlling for effects of overall lesion size. RESULTS: Patients declined by an average of 15% in their naming score, with wide variation across individuals. Decline was significantly related to damage in a cluster of voxels in the ventral temporal lobe, located mainly in the fusiform gyrus approximately 4-6 cm posterior to the temporal tip. Extent of damage to this region explained roughly 50% of the variance in outcome. Picture naming decline was not related to hippocampal or temporal pole damage. SIGNIFICANCE: The results provide the first statistical map relating lesion location in left temporal lobe epilepsy surgery to picture naming decline, and they support previous observations of transient naming deficits from electrical stimulation in the basal temporal cortex. The critical lesion is relatively posterior and could be avoided in many patients undergoing left temporal lobe surgery for intractable epilepsy.


Assuntos
Anomia/fisiopatologia , Lobectomia Temporal Anterior/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/cirurgia , Complicações Pós-Operatórias/fisiopatologia , Lobo Temporal/cirurgia , Adulto , Anomia/etiologia , Lobectomia Temporal Anterior/efeitos adversos , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Adulto Jovem
19.
Neuroimage Clin ; 27: 102341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32707534

RESUMO

This study explored the taxonomy of cognitive impairment within temporal lobe epilepsy and characterized the sociodemographic, clinical and neurobiological correlates of identified cognitive phenotypes. 111 temporal lobe epilepsy patients and 83 controls (mean ages 33 and 39, 57% and 61% female, respectively) from the Epilepsy Connectome Project underwent neuropsychological assessment, clinical interview, and high resolution 3T structural and resting-state functional MRI. A comprehensive neuropsychological test battery was reduced to core cognitive domains (language, memory, executive, visuospatial, motor speed) which were then subjected to cluster analysis. The resulting cognitive subgroups were compared in regard to sociodemographic and clinical epilepsy characteristics as well as variations in brain structure and functional connectivity. Three cognitive subgroups were identified (intact, language/memory/executive function impairment, generalized impairment) which differed significantly, in a systematic fashion, across multiple features. The generalized impairment group was characterized by an earlier age at medication initiation (P < 0.05), fewer patient (P < 0.001) and parental years of education (P < 0.05), greater racial diversity (P < 0.05), and greater number of lifetime generalized seizures (P < 0.001). The three groups also differed in an orderly manner across total intracranial (P < 0.001) and bilateral cerebellar cortex volumes (P < 0.01), and rate of bilateral hippocampal atrophy (P < 0.014), but minimally in regional measures of cortical volume or thickness. In contrast, large-scale patterns of cortical-subcortical covariance networks revealed significant differences across groups in global and local measures of community structure and distribution of hubs. Resting-state fMRI revealed stepwise anomalies as a function of cluster membership, with the most abnormal patterns of connectivity evident in the generalized impairment group and no significant differences from controls in the cognitively intact group. Overall, the distinct underlying cognitive phenotypes of temporal lobe epilepsy harbor systematic relationships with clinical, sociodemographic and neuroimaging correlates. Cognitive phenotype variations in patient and familial education and ethnicity, with linked variations in total intracranial volume, raise the question of an early and persisting socioeconomic-status related neurodevelopmental impact, with additional contributions of clinical epilepsy factors (e.g., lifetime generalized seizures). The neuroimaging features of cognitive phenotype membership are most notable for disrupted large scale cortical-subcortical networks and patterns of functional connectivity with bilateral hippocampal and cerebellar atrophy. The cognitive taxonomy of temporal lobe epilepsy appears influenced by features that reflect the combined influence of socioeconomic, neurodevelopmental and neurobiological risk factors.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Adulto , Cognição , Epilepsia do Lobo Temporal/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Fenótipo
20.
Epilepsy Behav ; 110: 107172, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32554180

RESUMO

Neuroticism, a core personality trait characterized by a tendency towards experiencing negative affect, has been reported to be higher in people with temporal lobe epilepsy (TLE) compared with healthy individuals. Neuroticism is a known predictor of depression and anxiety, which also occur more frequently in people with TLE. The purpose of this study was to identify abnormalities in whole-brain resting-state functional connectivity in relation to neuroticism in people with TLE and to determine the degree of unique versus shared patterns of abnormal connectivity in relation to elevated symptoms of depression and anxiety. Ninety-three individuals with TLE (55 females) and 40 healthy controls (18 females) from the Epilepsy Connectome Project (ECP) completed measures of neuroticism, depression, and anxiety, which were all significantly higher in people with TLE compared with controls. Resting-state functional connectivity was compared between controls and groups with TLE with high and low neuroticism using analysis of variance (ANOVA) and t-test. In secondary analyses, the same analytics were performed using measures of depression and anxiety and the unique variance in resting-state connectivity associated with neuroticism independent of symptoms of depression and anxiety identified. Increased neuroticism was significantly associated with hyposynchrony between the right hippocampus and Brodmann area (BA) 9 (region of prefrontal cortex (PFC)) (p < 0.005), representing a unique relationship independent of symptoms of depression and anxiety. Hyposynchrony of connection between the right hippocampus and BA47 (anterior frontal operculum) was associated with high neuroticism and with higher depression and anxiety scores (p < 0.05), making it a shared abnormal connection for the three measures. In conclusion, increased neuroticism exhibits both unique and shared patterns of abnormal functional connectivity with depression and anxiety symptoms between regions of the mesial temporal and frontal lobe.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Sistema Límbico/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neuroticismo/fisiologia , Lobo Temporal/diagnóstico por imagem , Adulto , Conectoma/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Lobo Frontal/fisiopatologia , Lateralidade Funcional/fisiologia , Humanos , Sistema Límbico/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Lobo Temporal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...