Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535319

RESUMO

Type 2 diabetes (T2D) is a global public health issue characterized by excess weight, abdominal obesity, dyslipidemia, hyperglycemia, and a progressive increase in insulin resistance. Human population studies of T2D development and its effects on systemic metabolism are confounded by many factors that cannot be controlled, complicating the interpretation of results and the identification of early biomarkers. Aged, sedentary, and overweight/obese non-human primates (NHPs) are one of the best animal models to mimic spontaneous T2D development in humans. We sought to identify and distinguish a set of plasma and/or fecal metabolite biomarkers, that have earlier disease onset predictability, and that could be evaluated for their predictability in subsequent T2D studies in human cohorts. In this study, a single plasma and fecal sample was collected from each animal in a colony of 57 healthy and dysmetabolic NHPs and analyzed for metabolomics and lipidomics. The samples were comprehensively analyzed using untargeted and targeted LC/MS/MS. The changes in each animal's disease phenotype were monitored using IVGTT, HbA1c, and other clinical metrics, and correlated with their metabolic profile. The plasma and fecal lipids, as well as bile acid profiles, from Healthy, Dysmetabolic (Dys), and Diabetic (Dia) animals were compared. Following univariate and multivariate analyses, including adjustments for weight, age, and sex, several plasma lipid species were identified to be significantly different between these animal groups. Medium and long-chain plasma phosphatidylcholines (PCs) ranked highest at distinguishing Healthy from Dys animals, whereas plasma triglycerides (TG) primarily distinguished Dia from Dys animals. Random Forest (RF) analysis of fecal bile acids showed a reduction in the secondary bile acid glycoconjugate, GCDCA, in diseased animals (AUC 0.76[0.64, 0.89]). Moreover, metagenomics results revealed several bacterial species, belonging to the genera Roseburia, Ruminococcus, Clostridium, and Streptococcus, to be both significantly enriched in non-healthy animals and associated with secondary bile acid levels. In summary, our results highlight the detection of several elevated circulating plasma PCs and microbial species associated with fecal secondary bile acids in NHP dysmetabolic states. The lipids and metabolites we have identified may help researchers to differentiate individual NHPs more precisely between dysmetabolic and overtly diabetic states. This could help assign animals to study groups that are more likely to respond to potential therapies where a difference in efficacy might be anticipated between early vs. advanced disease.

2.
Front Endocrinol (Lausanne) ; 12: 641722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122330

RESUMO

Non-invasive beta cell function measurements may provide valuable information for improving diabetes diagnostics and disease management as the integrity and function of pancreatic beta cells have been found to be compromised in Type-1 and Type-2 diabetes. Currently, available diabetes assays either lack functional information or spatial identification of beta cells. In this work, we introduce a method to assess the function of beta cells in the non-human primate pancreas non-invasively with MRI using a Gd-based zinc(II) sensor as a contrast agent, Gd-CP027. Additionally, we highlight the role of zinc(II) ions in the paracrine signaling of the endocrine pancreas via serological measurements of insulin and c-peptide. Non-human primates underwent MRI exams with simultaneous blood sampling during a Graded Glucose Infusion (GGI) with Gd-CP027 or with a non-zinc(II) sensitive contrast agent, gadofosveset. Contrast enhancement of the pancreas resulting from co-release of zinc(II) ion with insulin was observed focally when using the zinc(II)-specific agent, Gd-CP027, whereas little enhancement was detected when using gadofosveset. The contrast enhancement detected by Gd-CP027 increased in parallel with an increased dose of infused glucose. Serological measurements of C-peptide and insulin indicate that Gd-CP027, a high affinity zinc(II) contrast agent, potentiates their secretion only as a function of glucose stimulation. Taken in concert, this assay offers the possibility of detecting beta cell function in vivo non-invasively with MRI and underscores the role of zinc(II) in endocrine glucose metabolism.


Assuntos
Meios de Contraste/farmacologia , Gadolínio/química , Células Secretoras de Insulina/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Zinco/química , Albuminas/química , Animais , Feminino , Glucose/metabolismo , Insulina , Íons , Macaca mulatta , Masculino , Pâncreas/metabolismo , Peptídeos/química , Primatas/metabolismo , Ligação Proteica
3.
Sci Rep ; 9(1): 1438, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723274

RESUMO

Until recently, preclinical and clinical work on diabetes has focused on the understanding of blood glucose elevation and its detrimental metabolic sequelae. The advent of continuous glucose monitoring (CGM) technology now allows real time monitoring of blood glucose levels as a time series, and thus the exploration of glucose dynamics at short time scales. Previous work has shown decreases in the complexity of glucose dynamics, as measured by multiscale entropy (MSE) analysis, in diabetes in humans, mice, and rats. Analyses for non-human primates (NHP) have not been reported, nor is it known if anti-diabetes compounds affect complexity of glucose dynamics. We instrumented four healthy and six diabetic rhesus monkeys with CGM probes in the carotid artery and collected glucose values at a frequency of one data point per second for the duration of the sensors' life span. Sensors lasted between 45 and 78 days. Five of the diabetic rhesus monkeys were also administered the anti-diabetic drug liraglutide daily beginning at day 39 of the CGM monitoring period. Glucose levels fluctuated during the day in both healthy and diabetic rhesus monkeys, peaking between 12 noon - 6 pm. MSE analysis showed reduced complexity of glucose dynamics in diabetic monkeys compared to healthy animals. Although liraglutide decreased glucose levels, it did not restore complexity in diabetic monkeys consistently. Complexity varied by time of day, more strongly for healthy animals than for diabetic animals. And by dividing the monitoring period into 3-day or 1-week subperiods, we were able to estimate within-animal variability of MSE curves. Our data reveal that decreased complexity of glucose dynamics is a conserved feature of diabetes from rodents to NHPs to man.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/sangue , Animais , Variação Biológica Individual , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Macaca mulatta
4.
Am J Physiol Endocrinol Metab ; 315(1): E63-E71, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351479

RESUMO

An increased contribution of de novo lipogenesis (DNL) may play a role in cases of dyslipidemia and adipose accretion; this suggests that inhibition of fatty acid synthesis may affect clinical phenotypes. Since it is not clear whether modulation of one step in the lipogenic pathway is more important than another, the use of tracer methods can provide a deeper level of insight regarding the control of metabolic activity. Although [2H]water is generally considered a reliable tracer for quantifying DNL in vivo (it yields a homogenous and quantifiable precursor labeling), the relatively long half-life of body water is thought to limit the ability of performing repeat studies in the same subjects; this can create a bottleneck in the development and evaluation of novel therapeutics for inhibiting DNL. Herein, we demonstrate the ability to perform back-to-back studies of DNL using [2H]water. However, this work uncovered special circumstances that affect the data interpretation, i.e., it is possible to obtain seemingly negative values for DNL. Using a rodent model, we have identified a physiological mechanism that explains the data. We show that one can use [2H]water to test inhibitors of DNL by performing back-to-back studies in higher species [i.e., treat nonhuman primates with platensimycin, an inhibitor of fatty acid synthase]; studies also demonstrate the unsuitability of [13C]acetate.


Assuntos
Óxido de Deutério/farmacologia , Ácido Palmítico/sangue , Acetatos/sangue , Adipogenia , Animais , Feminino , Meia-Vida , Lipogênese/efeitos dos fármacos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL
5.
Science ; 357(6350): 507-511, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28705990

RESUMO

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722-mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/induzido quimicamente , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Imidazóis/farmacologia , Piridinas/farmacologia , Animais , Benzimidazóis , Glicemia/efeitos dos fármacos , Jejum , Glicogênio/metabolismo , Hipoglicemia/induzido quimicamente , Imidazóis/efeitos adversos , Imidazóis/química , Insulina/farmacologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Piridinas/efeitos adversos , Piridinas/química
6.
Am J Physiol Endocrinol Metab ; 312(4): E235-E243, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143858

RESUMO

Insulin resistance and diabetes can develop spontaneously with obesity and aging in rhesus monkeys, highly similar to the natural history of obesity, insulin resistance, and progression to type 2 diabetes in humans. The current studies in obese rhesus were undertaken to assess hepatic and adipose contributions to systemic insulin resistance-currently, a gap in our knowledge-and to benchmark the responses to pioglitazone (PIO). A two-step hyperinsulinemic-euglycemic clamp, with tracer-based glucose flux estimates, was used to measure insulin resistance, and in an intervention study was repeated following 6 wk of PIO treatment (3 mg/kg). Compared with lean healthy rhesus, obese rhesus has a 60% reduction of glucose utilization during a high insulin infusion and markedly impaired suppression of lipolysis, which was evident at both low and high insulin infusion. However, obese dysmetabolic rhesus manifests only mild hepatic insulin resistance. Six-week PIO treatment significantly improved skeletal muscle and adipose insulin resistance (by ~50%). These studies strengthen the concept that insulin resistance in obese rhesus closely resembles human insulin resistance and indicate the value of obese rhesus for appraising new insulin-sensitizing therapeutics.


Assuntos
Tecido Adiposo/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Tiazolidinedionas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Técnica Clamp de Glucose , Hipoglicemiantes/uso terapêutico , Lipólise/fisiologia , Fígado/efeitos dos fármacos , Macaca mulatta , Músculo Esquelético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Pioglitazona , Tiazolidinedionas/uso terapêutico
7.
ILAR J ; 48(2): 120-30, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17420533

RESUMO

Training programs for research personnel are discussed as a key resource that must be part of an effective animal care and use program. Because of the legal responsibility to ensure that research staff are qualified to use animals, many institutions have justified the necessity for a training coordinator and/or trainers for their animal care and use programs. Effective training programs for research personnel must meet the needs of the client base (research scientists and staff) so that they are relevant, practical, and timely. To meet these objectives, it is useful to involve the scientific staff in the analysis of their learning needs. To meet a performance standard necessary for quality research, a large percentage of the institutional staff must participate in the training program. Often it is the principal investigators who set the tone for their staff members regarding the importance of receiving training. Garnering support from this client base will create a culture that encourages training and engenders a positive attitude about humane animal care and use. One effective approach is to incorporate nonanimal models as alternatives to live animals to teach humane handling techniques and methods, thereby contributing to refinement, reduction, and replacement (the 3Rs). Also discussed are the necessity of timely feedback from clients, documentation of personnel training for regulatory purposes, and the collection of training metrics, which assists in providing justification for the granting of additional fiscal support for the program. Finally, the compliance procedures and opportunities for essential refresher training are discussed and related to high performance standards, humane animal use, and quality research, all of which contribute to the 3Rs.


Assuntos
Técnicos em Manejo de Animais/educação , Bem-Estar do Animal , Animais de Laboratório , Ciência dos Animais de Laboratório/educação , Pesquisadores/educação , Animais
8.
Proc Natl Acad Sci U S A ; 100(11): 6825-30, 2003 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-12748388

RESUMO

Dipeptidyl peptidase IV (DP-IV), a member of the prolyl oligopeptidase family of peptidases, is involved in the metabolic inactivation of a glucose-dependent insulinotropic hormone, glucagon-like peptide 1 (GLP-1), and other incretin hormones. Here, we investigated the impact of DP-IV deficiency on body weight control and insulin sensitivity in mice. Whereas WT mice displayed accelerated weight gain and hyperinsulinemia when fed a high-fat diet (HFD), mice lacking the gene encoding DP-IV (DP-IV-/-) are refractory to the development of obesity and hyperinsulinemia. Pair-feeding and indirect calorimetry studies indicate that reduced food intake and increased energy expenditure accounted for the resistance to HFD-induced obesity in the DP-IV-/- mice. Ablation of DP-IV also is associated with elevated GLP-1 levels and improved metabolic control in these animals, resulting in improved insulin sensitivity, reduced pancreatic islet hypertrophy, and protection against streptozotocin-induced loss of beta cell mass and hyperglycemia. Together, these observations suggest that chronic deletion of DP-IV gene has significant impact on body weight control and energy homeostasis, providing validation of DP-IV inhibition as a viable therapeutic option for the treatment of metabolic disorders related to diabetes and obesity.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Predisposição Genética para Doença , Resistência à Insulina , Obesidade/genética , Animais , Sequência de Bases , Primers do DNA , Dipeptidil Peptidase 4/genética , Hiperglicemia/induzido quimicamente , Imuno-Histoquímica , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estreptozocina
9.
Nat Med ; 8(2): 179-83, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11821903

RESUMO

Obesity and insulin resistance are major risk factors for a number of metabolic disorders, such as type 2 diabetes mellitus. Insulin has been suggested to function as one of the adiposity signals to the brain for modulation of energy balance. Administration of insulin into the brain reduces food intake and body weight, and mice with a genetic deletion of neuronal insulin receptors are hyperphagic and obese. However, insulin is also an anabolic factor; when administered systemically, pharmacological levels of insulin are associated with body weight gain in patients. In this study, we investigated the efficacy and feasibility of small molecule insulin mimetic compounds to regulate key parameters of energy homeostasis. Central intracerebroventricular (i.c.v.) administration of an insulin mimetic resulted in a dose-dependent reduction of food intake and body weight in rats, and altered the expression of hypothalamic genes known to regulate food intake and body weight. Oral administration of a mimetic in a mouse model of high-fat diet-induced obesity reduced body weight gain, adiposity and insulin resistance. Thus, insulin mimetics have a unique advantage over insulin in the control of body weight and hold potential as a novel anti-obesity treatment.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Benzoquinonas/farmacologia , Peso Corporal/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Insulina/farmacologia , Obesidade/prevenção & controle , Paladar/efeitos dos fármacos , Animais , Apetite/efeitos dos fármacos , Ventrículos Cerebrais/efeitos dos fármacos , Ventrículos Cerebrais/fisiologia , Dieta , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraventriculares , Resistência à Insulina , Masculino , Reação em Cadeia da Polimerase , Ratos , Ratos Endogâmicos , Ratos Long-Evans , Sódio na Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...