Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 26: 532-546, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36092362

RESUMO

Despite recent therapeutic advances, metastatic breast cancer (MBC) remains incurable. Engineered measles virus (MV) constructs based on the attenuated MV Edmonston vaccine platform have demonstrated significant oncolytic activity against solid tumors. The Helicobacter pylori neutrophil-activating protein (NAP) is responsible for the robust inflammatory reaction in gastroduodenal mucosa during bacterial infection. NAP attracts and activates immune cells at the site of infection, inducing expression of pro-inflammatory mediators. We engineered an MV strain to express the secretory form of NAP (MV-s-NAP) and showed that it exhibits anti-tumor and immunostimulatory activity in human breast cancer xenograft models. In this study, we utilized a measles-infection-permissive mouse model (transgenic IFNAR KO-CD46Ge) to evaluate the biodistribution and safety of MV-s-NAP. The primary objective was to identify potential toxic side effects and confirm the safety of the proposed clinical doses of MV-s-NAP prior to a phase I clinical trial of intratumoral administration of MV-s-NAP in patients with MBC. Both subcutaneous delivery (corresponding to the clinical trial intratumoral administration route) and intravenous (worst case scenario) delivery of MV-s-NAP were well tolerated: no significant clinical, laboratory or histologic toxicity was observed. This outcome supports the safety of MV-s-NAP for oncolytic virotherapy of MBC. The first-in-human clinical trial of MV-s-NAP in patients with MBC (ClinicalTrials.gov: NCT04521764) was subsequently activated.

2.
Mol Ther Oncolytics ; 21: 98-109, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33981826

RESUMO

Reporter gene imaging (RGI) can accelerate development timelines for gene and viral therapies by facilitating rapid and noninvasive in vivo studies to determine the biodistribution, magnitude, and durability of viral gene expression and/or virus infection. Functional molecular imaging systems used for this purpose can be divided broadly into deep-tissue and optical modalities. Deep-tissue modalities, which can be used in animals of any size as well as in human subjects, encompass single photon emission computed tomography (SPECT), positron emission tomography (PET), and functional/molecular magnetic resonance imaging (f/mMRI). Optical modalities encompass fluorescence, bioluminescence, Cerenkov luminescence, and photoacoustic imaging and are suitable only for small animal imaging. Here we discuss the mechanisms of action and relative merits of currently available reporter gene systems, highlighting the strengths and weaknesses of deep tissue versus optical imaging systems and the hardware/reagents that are used for data capture and processing. In light of recent technological advances, falling costs of imaging instruments, better availability of novel radioactive and optical tracers, and a growing realization that RGI can give invaluable insights across the entire in vivo translational spectrum, the approach is becoming increasingly essential to facilitate the competitive development of new virus- and gene-based drugs.

3.
Mol Ther ; 29(1): 236-243, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33038323

RESUMO

The sodium iodide symporter (NIS) is widely used as a reporter gene to noninvasively monitor the biodistribution and durability of vector-mediated gene expression via gamma scintigraphy, single-photon emission computed tomography (SPECT), and positron-emission tomography (PET). However, the approach is limited by background signal due to radiotracer uptake by endogenous NIS-expressing tissues. In this study, using the SPECT tracer pertechnetate (99mTcO4) and the PET tracer tetrafluoroborate (B18F4), in combination with the NIS inhibitor perchlorate, we compared the transport properties of human NIS and minke whale (Balaenoptera acutorostrata scammoni) NIS in vitro and in vivo. Based on its relative resistance to perchlorate, the NIS protein from minke whale appeared to be the superior candidate reporter gene. SPECT and PET imaging studies in nude mice challenged with NIS-encoding adeno-associated virus (AAV)-9 vectors confirmed that minke whale NIS, in contrast to human and endogenous mouse NIS, continues to function as a reliable reporter even when background radiotracer uptake by endogenous NIS is blocked by perchlorate.


Assuntos
Dependovirus/genética , Expressão Gênica , Genes Reporter , Vetores Genéticos/genética , Simportadores/genética , Animais , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Camundongos , Baleia Anã , Percloratos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
4.
J Chem Inf Model ; 60(3): 1652-1665, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32134653

RESUMO

The human sodium iodide symporter (hNIS) is a theranostic reporter gene which concentrates several clinically approved SPECT and PET radiotracers and plays an essential role for the synthesis of thyroid hormones as an iodide transporter in the thyroid gland. Development of hNIS mutants which could enhance translocation of the desired imaging ions is currently underway. Unfortunately, it is hindered by lack of understanding of the 3D organization of hNIS and its relation to anion transport. There are no known crystal structures of hNIS in any of its conformational states. Homology modeling can be very effective in such situations; however, the low sequence identity between hNIS and relevant secondary transporters with available experimental structures makes the choice of a template and the generation of 3D models nontrivial. Here, we report a combined application of homology modeling and molecular dynamics refining of the hNIS structure in its semioccluded state. The modeling was based on templates from the LeuT-fold protein family and was done with emphasis on the refinement of the substrate-ion binding pocket. The consensus model developed in this work is compared to available biophysical and biochemical experimental data for a number of different LeuT-fold proteins. Some functionally important residues contributing to the formation of putative binding sites and permeation pathways for the cotransported Na+ ions and I- substrate were identified. The model predictions were experimentally tested by generation of mutant versions of hNIS and measurement of relative (to WT hNIS) 125I- uptake of 35 hNIS variants.


Assuntos
Simportadores , Sítios de Ligação , Humanos , Iodetos/metabolismo , Simportadores/metabolismo , Glândula Tireoide/metabolismo
5.
PLoS One ; 15(2): e0229085, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084174

RESUMO

The sodium iodide symporter (NIS) transports iodide, which is necessary for thyroid hormone production. NIS also transports other monovalent anions such as tetrafluoroborate (BF4-), pertechnetate (TcO4-), and thiocyanate (SCN-), and is competitively inhibited by perchlorate (ClO4-). However, the mechanisms of substrate selectivity and inhibitor sensitivity are poorly understood. Here, a comparative approach was taken to determine whether naturally evolved NIS proteins exhibit variability in their substrate transport properties. The NIS proteins of thirteen animal species were initially assessed, and three species from environments with differing iodide availability, freshwater species Danio rerio (zebrafish), saltwater species Balaenoptera acutorostrata scammoni (minke whale), and non-aquatic mammalian species Homo sapiens (human) were studied in detail. NIS genes from each of these species were lentivirally transduced into HeLa cells, which were then characterized using radioisotope uptake assays, 125I- competitive substrate uptake assays, and kinetic assays. Homology models of human, minke whale and zebrafish NIS were used to evaluate sequence-dependent impact on the organization of Na+ and I- binding pockets. Whereas each of the three proteins that were analyzed in detail concentrated iodide to a similar degree, their sensitivity to perchlorate inhibition varied significantly: minke whale NIS was the least impacted by perchlorate inhibition (IC50 = 4.599 µM), zebrafish NIS was highly sensitive (IC50 = 0.081 µM), and human NIS showed intermediate sensitivity (IC50 = 1.566 µM). Further studies with fifteen additional substrates and inhibitors revealed similar patterns of iodide uptake inhibition, though the degree of 125I- uptake inhibition varied with each compound. Kinetic analysis revealed whale NIS had the lowest Km-I and the highest Vmax-I. Conversely, zebrafish NIS had the highest Km and lowest Vmax. Again, human NIS was intermediate. Molecular modeling revealed a high degree of conservation in the putative ion binding pockets of NIS proteins from different species, which suggests the residues responsible for the observed differences in substrate selectivity lie elsewhere in the protein. Ongoing studies are focusing on residues in the extracellular loops of NIS as determinants of anion specificity. These data demonstrate significant transport differences between the NIS proteins of different species, which may be influenced by the unique physiological needs of each organism. Our results also identify naturally-existing NIS proteins with significant variability in substrate transport kinetics and inhibitor sensitivity, which suggest that the affinity and selectivity of NIS for certain substrates can be altered for biotechnological and clinical applications. Further examination of interspecies differences may improve understanding of the substrate transport mechanism.


Assuntos
Boratos/metabolismo , Animais , Linhagem Celular , Células HeLa , Humanos , Cinética , Lentivirus/genética , Percloratos/metabolismo , Simportadores/metabolismo , Tiocianatos/metabolismo , Baleias , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...