Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 580(7805): 597-601, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161364

RESUMO

Ultrahot giant exoplanets receive thousands of times Earth's insolation1,2. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry3-5. Daysides are predicted to be cloud-free, dominated by atomic species6 and much hotter than nightsides5,7,8. Atoms are expected to recombine into molecules over the nightside9, resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed10-14, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night ('evening') and night-to-day ('morning') terminators could, however, be revealed as an asymmetric absorption signature during transit4,7,15. Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11 ± 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside16. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.

2.
Appl Opt ; 41(1): 193-6, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11900435

RESUMO

Mechanical flexure is a source of major failures in astronomical spectrographs, for which the reimaging of a focal-plane pinhole has to be maintained in position within a fraction of a CCD pixel that has dimensions of the order of 15 microm. The d.o.lo.res. (an acronym for device optimized for low resolution) spectrograph for the Italian national telescope, Galileo, showed displacements of the image of the pinhole more than 10 times greater than expected. The mechanical failure was overcome by the insertion of a passive optical wedge that can add an out-of-phase circle to the flexure ellipse. The results encourage the use of the gravitational eccentric correction optics (GECO) optical-gravitational device in all astronomical observations made with the d.o.lo.res. spectrograph.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...