Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 162: 12-22, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667681

RESUMO

Corneal cross-linking has been described as an effective treatment to slow the progression of keratoconus. The standard protocol entails corneal epithelial removal to allow the diffusion of riboflavin into the stroma. Although, de-epithelization can generate risks or complications that transepithelial cross-linking tries to solve or avoid. Different formulations were developed after verifying that hydroxypropyl-ß-cyclodextrin (HPßCD) and sulfobuthylether-ß-cyclodextrin (SBEßCD) in a 20% concentration, increased the solubility of practically insoluble in water drugs such as riboflavin from 0.12 mg/mL to 0.35 mg/mL and 0.29 mg/mL respectively. These values were higher when chitosan and arginine were added to the formulation, showing solubility of 0.78 mg/mL when HPßCD concentration was not modified. Ex vivo corneal permeability was measured after having kept in contact bovine corneas with intact epithelium for 5 h with the 0.1 mg/mL riboflavin solution, the formulations developed and a reproduced nanoemulsion from another work. Riboflavin's permeability was increased when cyclodextrins, chitosan, and arginine were part of the formulations, compared to the control drug solution. The best permeability coefficient was reached when riboflavin was combined with 40% (w/v) HPßCD, 0.5% (w/w) arginine, and 0.5% (w/w) chitosan. After having carried out toxicity studies as bovine corneal opacity and permeability (BCOP) and Hens Egg Test - Chorioallantoic Membrane Test (HET-CAM) it was verified that both, the active ingredients and the excipients of the different formulations were not harmful without generating irritation, loss of transparency or corneal permeability alterations. The results show the great potential of the ocular developed solution for their use in transepithelial cross-linking for keratoconus treatment.


Assuntos
Córnea/metabolismo , Ciclodextrinas/química , Excipientes/química , Ceratocone/tratamento farmacológico , Riboflavina/farmacocinética , Administração Oftálmica , Animais , Arginina/química , Arginina/toxicidade , Bovinos , Galinhas , Quitosana/química , Quitosana/toxicidade , Membrana Corioalantoide , Ciclodextrinas/toxicidade , Composição de Medicamentos/métodos , Emulsões , Excipientes/toxicidade , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/química , Soluções Oftálmicas/farmacocinética , Soluções Oftálmicas/toxicidade , Permeabilidade , Riboflavina/administração & dosagem , Solubilidade , Soluções , Testes de Toxicidade Aguda
2.
Int J Pharm ; 597: 120318, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33540021

RESUMO

Fungal keratitis is a severe infectious corneal disease. At present, no voriconazole ophthalmic formulations are approved by the FDA or EMA. This lack of therapeutic options leads to the reformulation of intravenous voriconazole preparations (VFEND®) by the hospital pharmacy departments to prepare the appropriate ophthalmic formulations (pharmacy compounding). However, the limited residence time of these formulations leads to an intensive treatment posology that may increase the occurrence of side effects. In the present study, two different hydrogels were developed and characterized in order to improve the voriconazole's ophthalmic solubility, permanence, and security. Voriconazole-cyclodextrin (HPßCD or HPÉ£CD) inclusion complexes in aqueous solutions were characterized by NMR and molecular modeling. Complexes were formed by encapsulation of voriconazole into the cyclodextrin's internal cavity which considerably increases its water solubility. Ocular safety was proven by ocular irritation studies. Permeability studies suggest both hydrogels have good corneal permeability. Furthermore, in vivo ocular permanence study by PET/CT showed a longer permanence time on the ocular surface (t1/2 = 58.91 ± 13.4 min and 96.28 ± 49.11 min for VZHAH and VZISH 0.65 respectively) compared to the voriconazole control formulation (VFEND® t1/2 = 32.27 ± 15.56 min). Results suggest these formulations are a good alternative for the treatment of fungal keratitis.


Assuntos
Infecções Oculares Fúngicas , Ceratite , 2-Hidroxipropil-beta-Ciclodextrina , Antifúngicos/uso terapêutico , Infecções Oculares Fúngicas/tratamento farmacológico , Humanos , Hidrogéis , Ceratite/tratamento farmacológico , Soluções Oftálmicas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Voriconazol
3.
Pharmaceutics ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151015

RESUMO

Cyclodextrin/poloxamer-soluble polypseudorotaxane-based nail lacquers have demonstrated significant capacity for promoting the permeation of drugs into the nail plate. Furthermore, previous studies have shown that the use of hydroalcoholic blends as vehicles promotes drug permeation. The work described herein studies the effect of the type of alcohol used in the lacquer preparation, and the composition of the vehicle is optimized to obtain soluble doses of 8% and to promote the diffusion of ciclopirox base and olamine across the nail. Permeation studies on different types of alcohols show that optimum results are achieved with short-chain alcohols, and that results become less satisfactory the higher the number of alcohol carbons. In addition, solubility and penetration studies on the bovine hoof have enabled the composition of the lacquer to be optimized for both forms of ciclopirox. The results suggest that optimized lacquers have better ciclopirox diffusion and penetration properties than the commercial reference lacquer. Lastly, in vivo studies in which optimized ciclopirox olamine lacquer was applied for 45 days to the nails of healthy volunteers showed that it caused no negative effects or changes to the nail surface. These results demonstrate the significant potential of cyclodextrin/poloxamer-soluble polypseudorotaxane-based nail lacquers for the ungual administration of drugs.

4.
Pharmaceutics ; 12(3)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188045

RESUMO

The treatment of the posterior-segment ocular diseases, such as age-related eye diseases (AMD) or diabetic retinopathy (DR), present a challenge for ophthalmologists due to the complex anatomy and physiology of the eye. This specialized organ is composed of various static and dynamic barriers that restrict drug delivery into the target site of action. Despite numerous efforts, effective intraocular drug delivery remains unresolved and, therefore, it is highly desirable to improve the current treatments of diseases affecting the posterior cavity. This review article gives an overview of pharmacokinetic and biopharmaceutics aspects for the most commonly-used ocular administration routes (intravitreal, topical, systemic, and periocular), including information of the absorption, distribution, and elimination, as well as the benefits and limitations of each one. This article also encompasses different conventional and novel drug delivery systems designed and developed to improve drug pharmacokinetics intended for the posterior ocular segment treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...