Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 61: 102643, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36857930

RESUMO

Cholesterol is a crucial component of membrane bilayers by regulating their structural and functional properties. Cholesterol traffics to different cellular compartments including mitochondria, whose cholesterol content is low compared to other cell membranes. Despite the limited availability of cholesterol in the inner mitochondrial membrane (IMM), the metabolism of cholesterol in the IMM plays important physiological roles, acting as the precursor for the synthesis of steroid hormones and neurosteroids in steroidogenic tissues and specific neurons, respectively, or the synthesis of bile acids through an alternative pathway in the liver. Accumulation of cholesterol in mitochondria above physiological levels has a negative impact on mitochondrial function through several mechanisms, including the limitation of crucial antioxidant defenses, such as the glutathione redox cycle, increased generation of reactive oxygen species and consequent oxidative modification of cardiolipin, and defective assembly of respiratory supercomplexes. These adverse consequences of increased mitochondrial cholesterol trafficking trigger the onset of oxidative stress and cell death, and, ultimately, contribute to the development of diverse diseases, including metabolic liver diseases (i.e. fatty liver disease and liver cancer), as well as lysosomal disorders (i.e. Niemann-Pick type C disease) and neurodegenerative diseases (i.e. Alzheimer's disease). In this review, we summarize the metabolism and regulation of mitochondrial cholesterol and its potential impact on liver and neurodegenerative diseases.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Humanos , Mitocôndrias/metabolismo , Oxirredução , Colesterol/metabolismo , Doenças Neurodegenerativas/metabolismo , Biologia
2.
Redox Biol ; 59: 102596, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610223

RESUMO

Alcoholic (ASH) and nonalcoholic. (NASH).steatohepatitis are advanced.stages.of.fatty.liver.disease.Methionine adenosyltransferase 1A (MAT1A) plays a key role in hepatic methionine metabolism and germline Mat1a deletion in mice promotes NASH. Acid sphingomyelinase (ASMase) triggers hepatocellular apoptosis and liver fibrosis and has been shown to downregulate MAT1A expression in the context of fulminant liver failure. Given the role of ASMase in steatohepatitis development, we investigated the status of ASMase in Mat1a-/- mice and the regulation of ASMase by SAM/SAH. Consistent with its role in NASH, Mat1a-/- mice fed a choline-deficient (CD) diet exhibited macrosteatosis, inflammation, fibrosis and liver injury as well as reduced total and mitochondrial GSH levels. Our data uncovered an increased basal expression and activity of ASMase but not neutral SMase in Mat1a-/- mice, which further increased upon CD feeding. Interestingly, adenovirus-mediated shRNA expression targeting ASMase reduced ASMase activity and protected Mat1a-/- mice against CD diet-induced NASH. Similar results were observed in CD fed Mat1a-/- mice by pharmacological inhibition of ASMase with amitriptyline. Moreover, Mat1a/ASMase double knockout mice were resistant to CD-induced NASH. ASMase knockdown protected wild type mice against NASH induced by feeding a diet deficient in methionine and choline. Furthermore, Mat1a-/- mice developed acute-on-chronic ASH and this outcome was ameliorated by amitriptyline treatment. In vitro data in primary mouse hepatocytes revealed that decreased SAM/SAH ratio increased ASMase mRNA level and activity. MAT1A and ASMase mRNA levels exhibited an inverse correlation in liver samples from patients with ASH and NASH. Thus, disruption of methionine metabolism sensitizes to steatohepatitis by ASMase activation via decreased SAM/SAH. These findings imply that MAT1A deletion and ASMase activation engage in a self-sustained loop of relevance for steatohepatitis.


Assuntos
Hepatite , Metionina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Amitriptilina/farmacologia , Amitriptilina/metabolismo , Colina , Dieta , Modelos Animais de Doenças , Fígado/metabolismo , Metionina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Racemetionina/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Hepatite/metabolismo
3.
Cell Mol Gastroenterol Hepatol ; 13(3): 925-947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34890841

RESUMO

BACKGROUND & AIMS: Sphingosine 1-phosphate receptors (S1PRs) are a group of G-protein-coupled receptors that confer a broad range of functional effects in chronic inflammatory and metabolic diseases. S1PRs also may mediate the development of nonalcoholic steatohepatitis (NASH), but the specific subtypes involved and the mechanism of action are unclear. METHODS: We investigated which type of S1PR isoforms is activated in various murine models of NASH. The mechanism of action of S1PR4 was examined in hepatic macrophages isolated from high-fat, high-cholesterol diet (HFHCD)-fed mice. We developed a selective S1PR4 functional antagonist by screening the fingolimod (2-amino-2-[2-(4- n -octylphenyl)ethyl]-1,3- propanediol hydrochloride)-like sphingolipid-focused library. RESULTS: The livers of various mouse models of NASH as well as hepatic macrophages showed high expression of S1pr4. Moreover, in a cohort of NASH patients, expression of S1PR4 was 6-fold higher than those of healthy controls. S1pr4+/- mice were protected from HFHCD-induced NASH and hepatic fibrosis without changes in steatosis. S1pr4 depletion in hepatic macrophages inhibited lipopolysaccharide-mediated Ca++ release and deactivated the Nod-like receptor pyrin domain-containning protein 3 (NLRP3) inflammasome. S1P increased the expression of S1pr4 in hepatic macrophages and activated NLRP3 inflammasome through inositol trisphosphate/inositol trisphosphate-receptor-dependent [Ca++] signaling. To further clarify the biological function of S1PR4, we developed SLB736, a novel selective functional antagonist of SIPR4. Similar to S1pr4+/- mice, administration of SLB736 to HFHCD-fed mice prevented the development of NASH and hepatic fibrosis, but not steatosis, by deactivating the NLRP3 inflammasome. CONCLUSIONS: S1PR4 may be a new therapeutic target for NASH that mediates the activation of NLRP3 inflammasome in hepatic macrophages.


Assuntos
Inflamassomos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores de Esfingosina-1-Fosfato
4.
J Hepatol ; 74(6): 1429-1441, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33515644

RESUMO

BACKGROUND & AIMS: Besides their physiological role in bile formation and fat digestion, bile acids (BAs) synthesised from cholesterol in hepatocytes act as signalling molecules that modulate hepatocellular carcinoma (HCC). Trafficking of cholesterol to mitochondria through steroidogenic acute regulatory protein 1 (STARD1) is the rate-limiting step in the alternative pathway of BA generation, the physiological relevance of which is not well understood. Moreover, the specific contribution of the STARD1-dependent BA synthesis pathway to HCC has not been previously explored. METHODS: STARD1 expression was analyzed in a cohort of human non-alcoholic steatohepatitis (NASH)-derived HCC specimens. Experimental NASH-driven HCC models included MUP-uPA mice fed a high-fat high-cholesterol (HFHC) diet and diethylnitrosamine (DEN) treatment in wild-type (WT) mice fed a HFHC diet. Molecular species of BAs and oxysterols were analyzed by mass spectrometry. Effects of NASH-derived BA profiles were investigated in tumour-initiated stem-like cells (TICs) and primary mouse hepatocytes (PMHs). RESULTS: Patients with NASH-associated HCC exhibited increased hepatic expression of STARD1 and an enhanced BA pool. Using NASH-driven HCC models, STARD1 overexpression in WT mice increased liver tumour multiplicity, whereas hepatocyte-specific STARD1 deletion (Stard1ΔHep) in WT or MUP-uPA mice reduced tumour burden. These findings mirrored the levels of unconjugated primary BAs, ß-muricholic acid and cholic acid, and their tauroconjugates in STARD1-overexpressing and Stard1ΔHep mice. Incubation of TICs or PMHs with a mix of BAs mimicking this profile stimulated expression of genes involved in pluripotency, stemness and inflammation. CONCLUSIONS: The study reveals a previously unrecognised role of STARD1 in HCC pathogenesis, wherein it promotes the synthesis of primary BAs through the mitochondrial pathway, the products of which act in TICs to stimulate self-renewal, stemness and inflammation. LAY SUMMARY: Effective therapy for hepatocellular carcinoma (HCC) is limited because of our incomplete understanding of its pathogenesis. The contribution of the alternative pathway of bile acid (BA) synthesis to HCC development is unknown. We uncover a key role for steroidogenic acute regulatory protein 1 (STARD1) in non-alcoholic steatohepatitis-driven HCC, wherein it stimulates the generation of BAs in the mitochondrial acidic pathway, the products of which stimulate hepatocyte pluripotency and self-renewal, as well as inflammation.


Assuntos
Ácidos e Sais Biliares/biossíntese , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais/genética , Adulto , Idoso , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Células Cultivadas , Estudos de Coortes , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Deleção de Genes , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Fosfoproteínas/genética , Adulto Jovem
5.
Semin Cancer Biol ; 73: 76-85, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32805396

RESUMO

Cholesterol is a crucial component of membrane bilayers that determines their physical and functional properties. Cells largely satisfy their need for cholesterol through the novo synthesis from acetyl-CoA and this demand is particularly critical for cancer cells to sustain dysregulated cell proliferation. However, the association between serum or tissue cholesterol levels and cancer development is not well established as epidemiologic data do not consistently support this link. While most preclinical studies focused on the role of total celular cholesterol, the specific contribution of the mitochondrial cholesterol pool to alterations in cancer cell biology has been less explored. Although low compared to other bilayers, the mitochondrial cholesterol content plays an important physiological function in the synthesis of steroid hormones in steroidogenic tissues or bile acids in the liver and controls mitochondrial function. In addition, mitochondrial cholesterol metabolism generates oxysterols, which in turn, regulate multiple pathways, including cholesterol and lipid metabolism as well as cell proliferation. In the present review, we summarize the regulation of mitochondrial cholesterol, including its role in mitochondrial routine performance, cell death and chemotherapy resistance, highlighting its potential contribution to cancer. Of particular relevance is hepatocellular carcinoma, whose incidence in Western countries had tripled in the past decades due to the obesity and type II diabetes epidemic. A better understanding of the role of mitochondrial cholesterol in cancer development may open up novel opportunities for cancer therapy.


Assuntos
Colesterol/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/metabolismo , Neoplasias , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
6.
Gut ; 70(10): 1954-1964, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33208407

RESUMO

OBJECTIVE: Lipotoxic hepatocyte injury is a primary event in non-alcoholic steatohepatitis (NASH), but the mechanisms of lipotoxicity are not fully defined. Sphingolipids and free cholesterol (FC) mediate hepatocyte injury, but their link in NASH has not been explored. We examined the role of free cholesterol and sphingomyelin synthases (SMSs) that generate sphingomyelin (SM) and diacylglycerol (DAG) in hepatocyte pyroptosis, a specific form of programmed cell death associated with inflammasome activation, and NASH. DESIGN: Wild-type C57BL/6J mice were fed a high fat and high cholesterol diet (HFHCD) to induce NASH. Hepatic SMS1 and SMS2 expressions were examined in various mouse models including HFHCD-fed mice and patients with NASH. Pyroptosis was estimated by the generation of the gasdermin-D N-terminal fragment. NASH susceptibility and pyroptosis were examined following knockdown of SMS1, protein kinase Cδ (PKCδ), or the NLR family CARD domain-containing protein 4 (NLRC4). RESULTS: HFHCD increased the hepatic levels of SM and DAG while decreasing the level of phosphatidylcholine. Hepatic expression of Sms1 but not Sms2 was higher in mouse models and patients with NASH. FC in hepatocytes induced Sms1 expression, and Sms1 knockdown prevented HFHCD-induced NASH. DAG produced by SMS1 activated PKCδ and NLRC4 inflammasome to induce hepatocyte pyroptosis. Depletion of Nlrc4 prevented hepatocyte pyroptosis and the development of NASH. Conditioned media from pyroptotic hepatocytes activated the NOD-like receptor family pyrin domain containing 3 inflammasome (NLRP3) in Kupffer cells, but Nlrp3 knockout mice were not protected against HFHCD-induced hepatocyte pyroptosis. CONCLUSION: SMS1 mediates hepatocyte pyroptosis through a novel DAG-PKCδ-NLRC4 axis and holds promise as a therapeutic target for NASH.


Assuntos
Hepatócitos/enzimologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Piroptose , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Redox Biol ; 14: 164-177, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28942194

RESUMO

Cancer cells exhibit mitochondrial cholesterol (mt-cholesterol) accumulation, which contributes to cell death resistance by antagonizing mitochondrial outer membrane (MOM) permeabilization. Hepatocellular mt-cholesterol loading, however, promotes steatohepatitis, an advanced stage of chronic liver disease that precedes hepatocellular carcinoma (HCC), by depleting mitochondrial GSH (mGSH) due to a cholesterol-mediated impairment in mGSH transport. Whether and how HCC cells overcome the restriction of mGSH transport imposed by mt-cholesterol loading to support mGSH uptake remains unknown. Although the transport of mGSH is not fully understood, SLC25A10 (dicarboxylate carrier, DIC) and SLC25A11 (2-oxoglutarate carrier, OGC) have been involved in mGSH transport, and therefore we examined their expression and role in HCC. Unexpectedly, HCC cells and liver explants from patients with HCC exhibit divergent expression of these mitochondrial carriers, with selective OGC upregulation, which contributes to mGSH maintenance. OGC but not DIC downregulation by siRNA depleted mGSH levels and sensitized HCC cells to hypoxia-induced ROS generation and cell death as well as impaired cell growth in three-dimensional multicellular HCC spheroids, effects that were reversible upon mGSH replenishment by GSH ethyl ester, a membrane permeable GSH precursor. We also show that OGC regulates mitochondrial respiration and glycolysis. Moreover, OGC silencing promoted hypoxia-induced cardiolipin peroxidation, which reversed the inhibition of cholesterol on the permeabilization of MOM-like liposomes induced by Bax or Bak. Genetic OGC knockdown reduced the ability of tumor-initiating stem-like cells to induce liver cancer. These findings underscore the selective overexpression of OGC as an adaptive mechanism of HCC to provide adequate mGSH levels in the face of mt-cholesterol loading and suggest that OGC may be a novel therapeutic target for HCC treatment.


Assuntos
Colesterol/metabolismo , Glutationa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transportadores de Ácidos Dicarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Ratos
8.
J Hepatol ; 65(5): 963-971, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27318326

RESUMO

BACKGROUND & AIMS: Liver fibrosis is characterized by significant accumulation of extracellular matrix (ECM) proteins, mainly fibrillar collagen-I, as a result of persistent liver injury. Cartilage oligomeric matrix protein (COMP) is largely found in the ECM of skeletal tissue. Increased COMP expression has been associated with fibrogenesis in systemic sclerosis, lung fibrosis, chronic pancreatitis, cirrhosis and hepatocellular carcinoma. We hypothesized that COMP could induce fibrillar collagen-I deposition and participate in matrix remodeling thus contributing to the pathophysiology of liver fibrosis. METHODS: Thioacetamide (TAA) and carbon tetrachloride (CCl4) were used to induce liver fibrosis in wild-type (WT) and Comp-/- mice. In vitro experiments were performed with primary hepatic stellate cells (HSCs). RESULTS: COMP expression was detected in livers from control WT mice and was upregulated in response to either TAA or CCl4-induced liver fibrosis. TAA-treated or CCl4-injected Comp-/- mice showed less liver injury, inflammation and fibrosis compared to their corresponding control WT mice. Challenge of HSCs with recombinant COMP (rCOMP) induced intra- plus extracellular collagen-I deposition and increased matrix metalloproteinases (MMPs) 2, 9 and 13, albeit similar expression of transforming growth factor beta (TGFß) protein, in addition to Tgfß, tumour necrosis factor alpha (Tnfα) and tissue inhibitor of metalloproteinases-1 (Timp1) mRNAs. We demonstrated that COMP binds collagen-I; yet, it does not prevent collagen-I cleavage by MMP1. Last, rCOMP induced collagen-I expression in HSCs via CD36 receptor signaling and activation of the MEK1/2-pERK1/2 pathway. CONCLUSION: These results suggest that COMP contributes to liver fibrosis by regulating collagen-I deposition. LAY SUMMARY: Cartilage oligomeric matrix protein (COMP) induces fibrillar collagen-I deposition via the CD36 receptor signaling and activation of the MEK1/2-pERK1/2 pathway, and participates in extracellular matrix remodeling contributing to the pathophysiology of liver fibrosis.


Assuntos
Cirrose Hepática , Animais , Tetracloreto de Carbono , Carcinoma Hepatocelular , Proteína de Matriz Oligomérica de Cartilagem , Células Estreladas do Fígado , Fígado , Neoplasias Hepáticas , Camundongos
9.
Pharmacol Res Perspect ; 3(2): e00125, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26038701

RESUMO

The majority of chronic liver diseases are accompanied by oxidative stress, which induces apoptosis in hepatocytes and liver injury. Recent studies suggest that oxidative stress and insulin resistance are important in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the pathophysiology of diabetes complications. Metformin has been shown to be hepatoprotective in the insulin-resistant and leptin-deficient ob/ob mouse model of NAFLD. However, the mechanism involved in the protective effects of metformin has not been elucidated yet. Therefore, we investigated the protective effect of metformin against oxidative stress-induced apoptosis. Primary rat hepatocytes were exposed to the oxidative stress-generating compound menadione in the presence and absence of metformin. Apoptosis was determined by measuring caspase activity and poly(ADP-ribose) polymerase (PARP)-cleavage, and necrosis was measured by Sytox Green nuclear staining. We demonstrate that (1) Metformin inhibits menadione-induced caspase-9,-6,-3 activation and PARP-cleavage in a concentration-dependent manner. (2) Metformin increases menadione-induced heme oxygenase-1 (HO-1) expression and inhibits c-Jun N-terminal kinase (JNK)-phosphorylation. (3) Metformin does not induce necrosis in primary hepatocytes. Metformin protects hepatocytes against oxidative stress-induced caspase activation, PARP-cleavage and apoptosis. The anti-apoptotic effect of metformin is in part dependent on HO-1 and bcl-xl induction and inhibition of JNK activation and independent of insulin signaling. Our results elucidate novel protective mechanisms of metformin and indicate that metformin could be investigated as a novel therapeutic agent for the treatment of oxidative stress-related liver diseases.

10.
PLoS One ; 8(8): e71773, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951244

RESUMO

BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD). Metformin activates AMP-activated protein kinase (AMPK), the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR). Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA) or TNFα in combination with actinomycin D (actD). AMPK, mTOR and phosphoinositide-3 kinase (PI3K)/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Caspase 3/metabolismo , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Ácido Glicoquenodesoxicólico/metabolismo , Hepatócitos/patologia , Masculino , NF-kappa B/metabolismo , Necrose/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
11.
J Hepatol ; 57(4): 852-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22687340

RESUMO

BACKGROUND & AIMS: Steatohepatitis (SH) is associated with mitochondrial dysfunction and excessive production of superoxide, which can then be converted into H(2)O(2) by SOD2. Since mitochondrial GSH (mGSH) plays a critical role in H(2)O(2) reduction, we explored the interplay between superoxide, H(2)O(2), and mGSH in nutritional and genetic models of SH, which exhibit mGSH depletion. METHODS: We used isolated mitochondria and primary hepatocytes, as well as in vivo SH models showing mGSH depletion to test the consequences of superoxide scavenging. RESULTS: In isolated mitochondria and primary hepatocytes, superoxide scavenging by SOD mimetics or purified SOD decreased superoxide and peroxynitrite generation but increased H(2)O(2) following mGSH depletion, despite mitochondrial peroxiredoxin/thioredoxin defense. Selective mGSH depletion sensitized hepatocytes to cell death induced by SOD mimetics, and this was prevented by RIP1 kinase inhibition with necrostatin-1 or GSH repletion with GSH ethyl ester (GSHee). Mice fed the methionine-choline deficient (MCD) diet or MAT1A(-/-) mice exhibited reduced SOD2 activity; in vivo treatment with SOD mimetics increased liver damage, inflammation, and fibrosis, despite a decreased superoxide and 3-nitrotyrosine immunoreactivity, effects that were ameliorated by mGSH replenishment with GSHee, but not NAC. As a proof-of-principle of the detrimental role of superoxide scavenging when mGSH was depleted transgenic mice overexpressing SOD2 exhibited enhanced susceptibility to MCD-mediated SH. CONCLUSIONS: These findings underscore a critical role for mGSH in the therapeutic potential of superoxide scavenging in SH, and suggest that the combined approach of superoxide scavenging with mGSH replenishment may be important in SH.


Assuntos
Fígado Gorduroso/metabolismo , Glutationa/metabolismo , Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Oxirredução/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Alanina Transaminase/sangue , Animais , Antimicina A/farmacologia , Apoptose , Deficiência de Colina/complicações , Dieta , Modelos Animais de Doenças , Fígado Gorduroso/sangue , Fígado Gorduroso/enzimologia , Sequestradores de Radicais Livres/farmacologia , Hepatócitos/enzimologia , Peróxido de Hidrogênio/metabolismo , Masculino , Metaloporfirinas/farmacologia , Metionina/deficiência , Metionina Adenosiltransferase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Hepáticas/enzimologia , Ácidos Pentanoicos/farmacologia , Peroxirredoxina III/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Tiorredoxinas/metabolismo
12.
Hepatology ; 55(5): 1596-1609, 2012 05.
Artigo em Inglês | MEDLINE | ID: mdl-22213272

RESUMO

UNLABELLED: Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the L-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels, and NO· generation. Because a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as coinduced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhosis patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. To investigate the contribution of ASS to the pathophysiology of ALD, wildtype (WT) and Ass(+/-) mice (Ass(-/-) are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Compared with WT, Ass(+/-) mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction, and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress by way of the L-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol-treated Ass(+/-) mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase alpha (pAMPKα) to total AMPKα ratio, decreased sirtuin-1 (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) messenger RNAs (mRNAs), lower fatty acid ß-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense, and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. CONCLUSION: Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid ß-oxidation are key events.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/enzimologia , Argininossuccinato Sintase/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Hepatócitos/metabolismo , Hepatopatias Alcoólicas/enzimologia , Doença Aguda , Animais , Argininossuccinato Sintase/genética , Doença Crônica , Citocromo P-450 CYP2E1/genética , Modelos Animais de Doenças , Regulação para Baixo , Etanol , Feminino , Hepatócitos/fisiologia , Imuno-Histoquímica , Peroxidação de Lipídeos/genética , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Tirosina/análogos & derivados , Tirosina/metabolismo
13.
Liver Int ; 30(10): 1511-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20825559

RESUMO

BACKGROUND: Bile acids, reactive oxygen species (ROS) and inflammatory cytokines are crucial regulators of cell death in acute and chronic liver diseases. The contribution of each factor to hepatocyte death, either apoptosis or necrosis, has not been clarified as yet. It has been suggested that the generation of oxidative stress by bile acids contributes to hepatocyte death during cholestasis and bile acid toxicity, although the beneficial role of ROS prevention in bile acid-mediated cell death is not fully understood. AIM: Study the effects of anti-oxidants in bile acid-induced cell death in vitro. METHODS: Primary rat hepatocytes were exposed to the bile acids glycochenodeoxycholic acid (GCDCA) or taurolithocholic acid-3 sulphate in the absence or presence of ROS scavengers or anti-oxidants. Haeme oxygenase (HO)-1 mRNA levels were analysed by quantitative polymerase chain reaction. Apoptosis was quantified by acridine orange staining and caspase-3 activity assay. Necrosis was detected by Sytox green staining. RESULTS: Anti-oxidants do not attenuate bile acid-induced cell death. Furthermore, bile acid exposure does not enhance the mRNA expression of the oxidative stress-responsive gene HO-1. The Src-kinase inhibitor, SU6656, does reduce GCDCA-induced apoptosis and necrosis. CONCLUSIONS: In hepatocytes, bile acid-induced toxicity is not prevented by scavengers of oxidative stress. The beneficial effects observed in patients might be because of the contribution of ROS and cytokines rather than bile acid-mediated oxidative stress. However, the use of specific Src kinase inhibitors might be a useful tool to prevent bile acid-induced injury in liver diseases.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ácido Glicoquenodesoxicólico/metabolismo , Hepatócitos/efeitos dos fármacos , Ácido Taurolitocólico/análogos & derivados , Animais , Caspase 3/metabolismo , Células Cultivadas , Citoproteção , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Necrose , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Ácido Taurolitocólico/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
14.
Free Radic Biol Med ; 44(7): 1323-33, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18206660

RESUMO

Most chronic liver diseases are accompanied by oxidative stress, which may induce apoptosis in hepatocytes and liver injury. Oxidative stress induces heme oxygenase-1 (HO-1) expression. This stress-responsive cytoprotective protein is responsible for heme degradation into carbon monoxide (CO), free iron, and biliverdin. CO is an important intracellular messenger; however, the exact mechanisms responsible for its cytoprotective effect are not yet elucidated. Thus, we investigated whether HO-1 and CO protect primary hepatocytes against oxidative-stress-induced apoptosis. In vivo, bile duct ligation was used as model of chronic liver disease. In vitro, primary hepatocytes were exposed to the superoxide anion donor menadione in a normal and in a CO-- containing atmosphere. Apoptosis was determined by measuring caspase-9, -6, -3 activity and poly(ADP-ribose) polymerase cleavage, and necrosis was determined by Sytox green staining. The results showed that (1) HO-1 is induced in chronic cholestatic liver disease, (2) superoxide anions time- and dose-dependently induce HO-1 activity, (3) HO-1 overexpression inhibits superoxide-anions-induced apoptosis, and (4) CO blocks superoxide-anions-induced JNK phosphorylation and caspase-9, -6, -3 activation and abolishes apoptosis but does not increase necrosis. We conclude that HO-1 and CO protect primary hepatocytes against superoxide-anions-induced apoptosis partially via inhibition of JNK activity. CO could represent an important candidate for the treatment of liver diseases.


Assuntos
Apoptose , Monóxido de Carbono/química , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/metabolismo , Hepatócitos/citologia , MAP Quinase Quinase 4/metabolismo , Estresse Oxidativo , Animais , Caspases/metabolismo , Hepatócitos/metabolismo , Hepatopatias/patologia , Modelos Biológicos , Necrose , Isoformas de Proteínas , Ratos , Superóxidos/metabolismo
15.
J Hepatol ; 44(5): 918-29, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16310883

RESUMO

BACKGROUND/AIMS: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of hepatocytes were exposed to the superoxide anion donor menadione (10-50 micromol/L) or H2O2 (1-5 mmol/L). Hepatocytes were also treated with caspases and MAPKs inhibitors, superoxide dismutase (PEG-SOD) and SNAP, a nitric oxide donor. Apoptosis was determined by measuring caspase-9, -6, -3 activation and cleaved PARP, and necrotic cell death by Sytox Green staining. RESULTS: (1) Menadione (50 micromol/L) induces JNK phosphorylation, caspase-9, -6, -3 activation, PARP cleavage and apoptosis. Superoxide anions-induced apoptosis is dependent on JNK activity. Menadione (50 micromol/L) induces the phosphorylation of ERK1/2 and this attenuates cell death. (2) H2O2 increases necrotic cell death at high concentration or when H2O2 detoxification is impaired. H2O2 does not activate MAPKs signalling. (3) PEG-SOD prevents ERK1/2-, JNK- phosphorylation, caspase activation and apoptosis induced by menadione. Glutathione depletion increases menadione-induced apoptosis. (4) SNAP abolishes menadione-induced apoptosis but increases necrotic cell death. CONCLUSIONS: In normal hepatocytes, superoxide anions-induced caspase activation and apoptosis is dependent on JNK activity and totally abolished by superoxide scavengers.


Assuntos
Apoptose/fisiologia , Hepatócitos/citologia , Hepatócitos/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Superóxidos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sequestradores de Radicais Livres/farmacologia , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Necrose , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Organismos Livres de Patógenos Específicos , Vitamina K 3/farmacologia , Vitaminas/farmacologia
16.
Hepatology ; 39(6): 1563-73, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15185297

RESUMO

Ursodeoxycholic acid (UDCA) is used in the treatment of cholestatic liver diseases, but its mechanism of action is not yet well defined. The aim of this study was to explore the protective mechanisms of the taurine-conjugate of UDCA (tauroursodeoxycholic acid [TUDCA]) against glycochenodeoxycholic acid (GCDCA)-induced apoptosis in primary cultures of rat hepatocytes. Hepatocytes were exposed to GCDCA, TUDCA, the glyco-conjugate of UDCA (GUDCA), and TCDCA. The phosphatidylinositol-3 kinase pathway (PI3K) and nuclear factor-kappaB were inhibited using LY 294002 and adenoviral overexpression of dominant-negative IkappaB, respectively. The role of p38 and extracellular signal-regulated protein kinase mitogen-activated protein kinase (MAPK) pathways were investigated using the inhibitors SB 203580 and U0 126 and Western blot analysis. Transcription was blocked by actinomycin-D. Apoptosis was determined by measuring caspase-3, -9, and -8 activity using fluorimetric enzyme detection, Western blot analysis, immunocytochemistry, and nuclear morphological analysis. Our results demonstrated that uptake of GCDCA is needed for apoptosis induction. TUDCA, but not TCDCA and GUDCA, rapidly inhibited, but did not delay, apoptosis at all time points tested. However, the protective effect of TUDCA was independent of its inhibition of caspase-8. Up to 6 hours of preincubation with TUDCA before addition of GCDCA clearly decreased GCDCA-induced apoptosis. At up to 1.5 hours after exposure with GCDCA, the addition of TUDCA was still protective. This protection was dependent on activation of p38, ERK MAPK, and PI3K pathways, but independent of competition on the cell membrane, NF-kappaB activation, and transcription. In conclusion, TUDCA contributes to the protection against GCDCA-induced mitochondria-controlled apoptosis by activating survival pathways.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/fisiologia , Hepatócitos/efeitos dos fármacos , Proteínas de Membrana Transportadoras , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Proteínas de Transporte/farmacologia , Caspase 3 , Caspase 9 , Inibidores de Caspase , Caspases/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ácido Glicoquenodesoxicólico/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Transportadores de Ânions Orgânicos Dependentes de Sódio , Ratos , Ratos Wistar , Simportadores , Proteínas Quinases p38 Ativadas por Mitógeno
17.
J Hepatol ; 39(2): 153-61, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12873810

RESUMO

BACKGROUND/AIMS: To examine the extent and mechanisms of apoptosis in cholestatic liver injury and to explore the role of the transcription factor nuclear factor-kappa B in protection against bile acid-induced apoptosis. METHODS: Cholestatic liver injury was induced by bile duct ligation in Wistar rats. Furthermore, primary cultures of rat hepatocytes were exposed to glycochenodeoxycholic acid (GCDCA), tauroursodeoxycholic acid (TUDCA), taurochenodeoxycholic acid (TCDCA) and to cytokines. Apoptosis was determined by TUNEL-staining, active caspase-3 staining, activation of caspase-8, -9 and -3. RESULTS: Limited hepatocyte apoptosis and an increased expression of NF-kappaB-regulated anti-apoptotic genes A1 and cIAP2 were detected in cholestatic rat livers. Bcl-2 expression was restricted to bile duct epithelium. In contrast to TCDCA and TUDCA, GCDCA induced apoptosis in a Fas-associated protein with death domain (FADD)-independent pathway in hepatocytes. Although bile acids do not activate NF-kappaB, NF-kappaB activation by cytokines (induced during cholestasis) protected against GCDCA-induced apoptosis in vitro by upregulating A1 and cIAP2. CONCLUSIONS: GCDCA induces apoptosis in a mitochondria-controlled pathway in which caspase-8 is activated in a FADD-independent manner. However, bile acid-induced apoptosis in cholestasis is limited. This could be explained by cytokine-induced activation of NF-kappaB-regulated anti-apoptotic genes like A1 and cIAP2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose/fisiologia , Colestase/metabolismo , Colestase/patologia , Hepatócitos/patologia , NF-kappa B/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Células Cultivadas , Citocinas/genética , Modelos Animais de Doenças , Proteína de Domínio de Morte Associada a Fas , Expressão Gênica , Ácido Glicoquenodesoxicólico/farmacologia , Hepatócitos/metabolismo , Masculino , Ratos , Ratos Wistar , Organismos Livres de Patógenos Específicos , Ácido Tauroquenodesoxicólico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...