Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 123(43): 9345-9356, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31580071

RESUMO

Pyruvate formate-lyase (PFL) is a glycyl radical enzyme that converts pyruvate and coenzyme A (CoA) into formate and acetyl-CoA in two half-reactions. Recently, we showed that the acetylation of the PFL active site in the first half-reaction induces subtle conformational changes, leading to the opening of a potential channel for CoA entry. Entry of CoA into the active site is crucial for the second half-reaction, involving the acetyl transfer to CoA, and the completion of the catalytic cycle. Using steered molecular dynamics (SMD) simulations, performed on acetylated and nonacetylated monomeric PFL model systems, we first of all investigate the possible entry/exit pathways of CoA with respect to the active site through the previously identified channel. We then perform umbrella sampling simulations on multiple snapshots from SMD trajectories as well as unrestrained molecular dynamics simulations starting from the final structures obtained from entry SMD, with a view to identifying possible bound states of CoA in the near vicinity of the active site. Detailed study of the unrestrained dissociation processes reveals the presence of stable and reactive bound states of CoA close to the active site, one of which is in an ideal position for triggering the second half-reaction. Examination of the spatial distributions associated with the reactive bound states allows us to discuss the free energy barriers. Umbrella sampling, performed on snapshots from unrestrained dynamics confirms the above findings. The significance of the results for the catalysis are discussed for both acetylated and nonacetylated systems.


Assuntos
Acetiltransferases/metabolismo , Coenzima A/metabolismo , Acetiltransferases/química , Sítios de Ligação , Coenzima A/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
2.
J Chem Inf Model ; 59(10): 4093-4099, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31525920

RESUMO

Given the need for modern researchers to produce open, reproducible scientific output, the lack of standards and best practices for sharing data and workflows used to produce and analyze molecular dynamics (MD) simulations has become an important issue in the field. There are now multiple well-established packages to perform molecular dynamics simulations, often highly tuned for exploiting specific classes of hardware, each with strong communities surrounding them, but with very limited interoperability/transferability options. Thus, the choice of the software package often dictates the workflow for both simulation production and analysis. The level of detail in documenting the workflows and analysis code varies greatly in published work, hindering reproducibility of the reported results and the ability for other researchers to build on these studies. An increasing number of researchers are motivated to make their data available, but many challenges remain in order to effectively share and reuse simulation data. To discuss these and other issues related to best practices in the field in general, we organized a workshop in November 2018 ( https://bioexcel.eu/events/workshop-on-sharing-data-from-molecular-simulations/ ). Here, we present a brief overview of this workshop and topics discussed. We hope this effort will spark further conversation in the MD community to pave the way toward more open, interoperable, and reproducible outputs coming from research studies using MD simulations.


Assuntos
Disseminação de Informação , Modelos Químicos , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes , Software , Fluxo de Trabalho
3.
Chemistry ; 25(37): 8741-8753, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30901109

RESUMO

Pyruvate formate-lyase (PFL) catalyzes the reversible conversion of pyruvate and coenzyme A (CoA) into formate and acetyl-CoA in two half-reactions. For the second half-reaction to take place, the S-H group of CoA must enter the active site of the enzyme to retrieve a protein-bound acetyl group. However, CoA is bound at the protein surface, whereas the active site is buried in the protein interior, some 20-30 Šaway. The PFL system was therefore subjected to a series of extensive molecular dynamics simulations (in the µs range) and a host of advanced analysis procedures. Models representing PFL before and after the first half-reaction were used to examine the possible effect of enzyme acetylation. All simulated structures were found to be relatively stable compared to the initial crystal structure. Although the adenine portion of CoA remained predominantly bound at the protein surface, the binding of the S-H group was significantly more labile. A potential entry channel for CoA, which would allow the S-H group to reach the active site, was identified and characterized. The channel was found to be associated with accentuated fluctuations and a higher probability of being in an open state in acetylated systems. This result suggests that the acetylation of the enzyme assumes a prominent functional role, whereby the formation of the acyl intermediate serves to initiate a subtle signaling cascade that influences the protein dynamics and facilitates the entry of the second substrate.


Assuntos
Acetiltransferases/química , Simulação de Dinâmica Molecular , Acetilação , Acetiltransferases/metabolismo , Sítios de Ligação , Biocatálise , Domínio Catalítico , Coenzima A/química , Coenzima A/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Ácido Pirúvico/metabolismo
4.
PLoS One ; 13(1): e0191882, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29370310

RESUMO

Despite decades of research, the mechanism of action of the ABC multidrug transporter P-glycoprotein (P-gp) remains elusive. Due to experimental limitations, many researchers have turned to molecular dynamics simulation studies in order to investigate different aspects of P-gp function. However, such studies are challenging and caution is required when interpreting the results. P-gp is highly flexible and the time scale on which it can be simulated is limited. There is also uncertainty regarding the accuracy of the various crystal structures available, let alone the structure of the protein in a physiologically relevant environment. In this study, three alternative structural models of mouse P-gp (3G5U, 4KSB, 4M1M), all resolved to 3.8 Å, were used to initiate sets of simulations of P-gp in a membrane environment in order to determine: a) the sensitivity of the results to differences in the starting configuration; and b) the extent to which converged results could be expected on the times scales commonly simulated for this system. The simulations suggest that the arrangement of the nucleotide binding domains (NBDs) observed in the crystal structures is not stable in a membrane environment. In all simulations, the NBDs rapidly associated (within 10 ns) and changes within the transmembrane helices were observed. The secondary structure within the transmembrane domain was best preserved in the 4M1M model under the simulation conditions used. However, the extent to which replicate simulations diverged on a 100 to 200 ns timescale meant that it was not possible to draw definitive conclusions as to which structure overall was most stable, or to obtain converged and reliable results for any of the properties examined. The work brings into question the reliability of conclusions made in regard to the nature of specific interactions inferred from previous simulation studies on this system involving similar sampling times. It also highlights the need to demonstrate the statistical significance of any results obtained in simulations of large flexible proteins, especially where the initial structure is uncertain.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Membranas/química , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Estrutura Secundária de Proteína
5.
Proc Natl Acad Sci U S A ; 114(9): 2218-2223, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193899

RESUMO

Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.


Assuntos
Proteínas de Bactérias/química , Etanolaminofosfotransferase/química , Lipídeo A/química , Neisseria meningitidis/química , Periplasma/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Lipídeo A/metabolismo , Simulação de Dinâmica Molecular , Neisseria meningitidis/enzimologia , Periplasma/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
Biochemistry ; 55(49): 6908-6918, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951661

RESUMO

A family of flavin/deazaflavin-dependent oxidoreductases (FDORs) from mycobacteria has been recently characterized and found to play a variety of catalytic roles, including the activation of prodrugs such as the candidate anti-tuberculosis drug pretomanid (PA-824). However, our understanding of the catalytic mechanism used by these enzymes is relatively limited. To address this, we have used a combination of quantum mechanics and molecular dynamics calculations to study the catalytic mechanism of the activation of pretomanid by the deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. The preferred pathway involves an initial hydride transfer step from the deprotonated cofactor (i.e., F420H-), with subsequent protonation, before a series of spontaneous intramolecular reactions to form the final reactive nitrogen species. The most likely proton source is a hydroxonium ion within the solvent accessible active site. Intriguingly, catalysis of the rate-determining hydride transfer step is aided by three tyrosine residues that form a hydrophobic barrier around the active site that, upon reaction, is then disrupted to allow increased water accessibility to facilitate the subsequent proton transfer step. The catalytic mechanism we propose is consistent with previous experimental observations of the Ddn enzyme and will inform the design of improved prodrugs in the future.


Assuntos
Oxirredutases/metabolismo , Catálise , Interações Hidrofóbicas e Hidrofílicas
7.
Protein Sci ; 25(9): 1692-709, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27364382

RESUMO

Bilirubin is a potent antioxidant that is produced from the reduction of the heme degradation product biliverdin. In mammalian cells and Cyanobacteria, NADH/NADPH-dependent biliverdin reductases (BVRs) of the Rossmann-fold have been shown to catalyze this reaction. Here, we describe the characterization of Rv2074 from Mycobacterium tuberculosis, which belongs to a structurally and mechanistically distinct family of F420 H2 -dependent BVRs (F-BVRs) that are exclusively found in Actinobacteria. We have solved the crystal structure of Rv2074 bound to its cofactor, F420 , and used this alongside molecular dynamics simulations, site-directed mutagenesis and NMR spectroscopy to elucidate its catalytic mechanism. The production of bilirubin by Rv2074 could exploit the anti-oxidative properties of bilirubin and contribute to the range of immuno-evasive mechanisms that have evolved in M. tuberculosis to allow persistent infection.


Assuntos
Proteínas de Bactérias/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biliverdina/química , Biliverdina/metabolismo , Cristalografia por Raios X , Mycobacterium tuberculosis/genética , Oxirredução , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Tuberculose/enzimologia , Tuberculose/genética
8.
Neurochem Int ; 98: 146-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27180050

RESUMO

The multidrug transporter P-glycoprotein (P-gp) is expressed in the blood-brain barrier endothelium where it effluxes a range of drug substrates, preventing their accumulation within the brain. P-gp has been studied extensively for 40 years because of its crucial role in the absorption, distribution, metabolism and elimination of a range of pharmaceutical compounds. Despite this, many aspects of the structure-function mechanism of P-gp are unresolved. Here we review the emerging role of molecular dynamics simulation techniques in our understanding of the membrane-embedded conformation of P-gp. We discuss its conformational plasticity in the presence and absence of ATP, and recent efforts to characterize the drug binding sites and uptake pathways.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Transporte Biológico Ativo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica
9.
J Chem Inf Model ; 55(6): 1202-17, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-25938863

RESUMO

The multidrug transporter P-glycoprotein (P-gp) is central to the development of multidrug resistance in cancer. While residues essential for transport and binding have been identified, the location, composition, and specificity of potential drug binding sites are uncertain. Here molecular dynamics simulations are used to calculate the free energy profile for the binding of morphine and nicardipine to P-gp. We show that morphine and nicardipine primarily interact with key residues implicated in binding and transport from mutational studies, binding at different but overlapping sites within the transmembrane pore. Their permeation pathways were distinct but involved overlapping sets of residues. The results indicate that the binding location and permeation pathways of morphine and nicardipine are not well separated and cannot be considered as unique. This has important implications for our understanding of substrate uptake and transport by P-gp. Our results are independent of the choice of starting structure and consistent with a range of experimental studies.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Biologia Computacional/métodos , Morfina/metabolismo , Nicardipino/metabolismo , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína
10.
J Chem Theory Comput ; 8(3): 1078-91, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-26593369

RESUMO

The active sites of the (6-4) photolyases contain two conserved histidine residues, which, in the Drosophila melanogaster enzyme, correspond to His365 and His369. While there are nine combinations in which the three possible protonation states of the two histidines (with protons on Nδ (HID), Nε (HIE), or both Nδ and Nε (HIP)) can be paired, there is presently no consensus as to which of these states is present, let alone mechanistically relevant. EPR hyperfine couplings for selected protons of the FADH(•) radical have previously been used to address this issue. Our QM/MM calculations show, however, that the experimental couplings are equally well reproduced by each of the nine combinations. Since the EPR results seemingly cannot be used to unequivocally assign the protonation states, the pKa values of the two histidines were calculated using the popular PROPKA, H++, and APBS approaches, in various environments and for several lesions. These techniques consistently indicate that, at pH = 7, both His365 and His369 should be neutral, although His369 is found to be more prone to becoming protonated. In a comparative approach, a series of molecular dynamics simulations was performed with all nine combinations, employing various reference crystal structures and different oxidation states of the FAD cofactor. The overall result of this approach is in agreement with our pKa results. Consequently, although the introduction of the reduced cofactor results in an increased stability for selected protonated states, particularly the His365═HID and His369═HIP combination, the neutral combination His365═HID and His365═HIE stands out as the most relevant state for the activity of the enzyme.

11.
J Chem Theory Comput ; 8(5): 1694-705, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26593663

RESUMO

We have investigated the conformational phase spaces of both Met-enkephalin and Ada-enkephalin in 2,2,2-trifluoroethanol in order to connect them to their respective CD spectra. To this end, we have characterized the conformational preferences of the zwitterionic and neutral forms of Met-enkephalin and of both the R- and the S-epimers of Ada-enkephalin, as obtained by classical molecular dynamics. The CD spectrum for each peptide was subsequently obtained with a procedure of successive averaging, which accounts for the behavior of the solvent, the side chains, and the backbone variations of the peptides. To make an appropriate comparison with experimental results, we have produced composite spectra that account for the appropriate contributions of the zwitterionic and neutral forms of the peptides as well as the expected epimeric ratio. Such a procedure results in theoretically obtained CD spectra that show significant promise in terms of reproducing their experimentally measured counterparts.

12.
J Comput Chem ; 31(5): 1024-35, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19847785

RESUMO

We present an ONIOM(G3:MM) method as an example of a technique capable of producing chemical accuracy in the quantum mechanical (QM) treatment with a molecular mechanical description context. By applying the method to small model systems, in which we are also able to calculate the pure QM G3-type results, it is possible to establish the reliability of the method as it applies to evaluating reaction mechanisms. By choosing small model systems that are relevant to the substrate mechanism of pyruvate formate-lyase, we are also able to discuss the inhibitory effect of oxamate and the relevance of an alternative H-abstraction mechanism in that context.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Modelos Biológicos , Modelos Moleculares , Ácido Oxâmico/química , Ácido Oxâmico/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Teoria Quântica
13.
J Comput Chem ; 29(14): 2425-33, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18442083

RESUMO

High level ab initio and density functional calculations have been employed to determine the most appropriate manner in which to truncate an arginine-bound carboxylate motif, using the substrate mechanism of Pyruvate Formate-Lyase as a case study. The results show that, both qualitatively and quantitatively, a neutral carboxylic acid provides a more realistic approximation to the salt bridge arrangement than does a bare anionic carboxylate substituent.


Assuntos
Acetiltransferases/química , Arginina/química , Ácidos Carboxílicos/química , Modelos Químicos , Modelos Moleculares , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...