Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(12)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37371131

RESUMO

Obstructive sleep apnoea (OSA) is a strong independent risk factor for atrial fibrillation (AF). Emerging clinical data cite adverse effects of OSA on AF induction, maintenance, disease severity, and responsiveness to treatment. Prevention using continuous positive airway pressure (CPAP) is effective in some groups but is limited by its poor compliance. Thus, an improved understanding of the underlying arrhythmogenic mechanisms will facilitate the development of novel therapies and/or better selection of those currently available to complement CPAP in alleviating the burden of AF in OSA. Arrhythmogenesis in OSA is a multifactorial process characterised by a combination of acute atrial stimulation on a background of chronic electrical, structural, and autonomic remodelling. Chronic intermittent hypoxia (CIH), a key feature of OSA, is associated with long-term adaptive changes in myocyte ion channel currents, sensitising the atria to episodic bursts of autonomic reflex activity. CIH is also a potent driver of inflammatory and hypoxic stress, leading to fibrosis, connexin downregulation, and conduction slowing. Atrial stretch is brought about by negative thoracic pressure (NTP) swings during apnoea, promoting further chronic structural remodelling, as well as acutely dysregulating calcium handling and electrical function. Here, we provide an up-to-date review of these topical mechanistic insights and their roles in arrhythmia.


Assuntos
Fibrilação Atrial , Apneia Obstrutiva do Sono , Humanos , Fibrilação Atrial/complicações , Átrios do Coração , Frequência Cardíaca , Pressão Positiva Contínua nas Vias Aéreas/efeitos adversos , Hipóxia/complicações , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/terapia
2.
Adv Exp Med Biol ; 1427: 175-184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322348

RESUMO

Angiotensin II (Ang II) is a hormone that plays a major role in maintaining homeostasis. The Ang II receptor type 1 (AT1R) is expressed in acute O2 sensitive cells, including carotid body (CB) type I cells and pheochromocytoma 12 (PC12) cells, and Ang II increases cell activity. While a functional role for Ang II and AT1Rs in increasing the activity of O2 sensitive cells has been established, the nanoscale distribution of AT1Rs has not. Furthermore, it is not known how exposure to hypoxia may alter the single-molecule arrangement and clustering of AT1Rs. In this study, the AT1R nanoscale distribution under control normoxic conditions in PC12 cells was determined using direct stochastic optical reconstruction microscopy (dSTORM). AT1Rs were arranged in distinct clusters with measurable parameters. Across the entire cell surface there averaged approximately 3 AT1R clusters/µm2 of cell membrane. Cluster area varied in size ranging from 1.1 × 10-4 to 3.9 × 10-2 µm2. Twenty-four hours of exposure to hypoxia (1% O2) altered clustering of AT1Rs, with notable increases in the maximum cluster area, suggestive of an increase in supercluster formation. These observations could aid in understanding mechanisms underlying augmented Ang II sensitivity in O2 sensitive cells in response to sustained hypoxia.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Ratos , Animais , Microscopia , Células PC12 , Receptor Tipo 1 de Angiotensina/metabolismo , Hipóxia , Angiotensina II/metabolismo , Angiotensina II/farmacologia
4.
Front Physiol ; 13: 908617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711317

RESUMO

It is generally acknowledged that the carotid body (CB) type I cell mitochondria are unique, being inhibited by relatively small falls in PaO2 well above those known to inhibit electron transport in other cell types. This feature is suggested to allow for the CB to function as an acute O2 sensor, being stimulated and activating systemic protective reflexes before the metabolism of other cells becomes compromised. What is less clear is precisely how a fall in mitochondrial activity links to type I cell depolarisation, a process that is required for initiation of the chemotransduction cascade and post-synaptic action potential generation. Multiple mitochondrial/metabolic signalling mechanisms have been proposed including local generation of mitochondrial reactive oxygen species (mitoROS), a change in mitochondrial/cellular redox status, a fall in MgATP and an increase in lactate. Although each mechanism is based on compelling experimental evidence, they are all not without question. The current review aims to explore the importance of each of these signalling pathways in mediating the overall CB response to hypoxia. We suggest that there is unlikely to be a single mechanism, but instead multiple mitochondrial related signalling pathways are recruited at different PaO2s during hypoxia. Furthermore, it still remains to be determined if mitochondrial signalling acts independently or in partnership with extra-mitochondrial O2-sensors.

5.
Respir Res ; 22(1): 255, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579722

RESUMO

INTRODUCTION: There is relatively little published on the effects of COVID-19 on respiratory physiology, particularly breathing patterns. We sought to determine if there were lasting detrimental effect following hospital discharge and if these related to the severity of COVID-19. METHODS: We reviewed lung function and breathing patterns in COVID-19 survivors > 3 months after discharge, comparing patients who had been admitted to the intensive therapy unit (ITU) (n = 47) to those who just received ward treatments (n = 45). Lung function included spirometry and gas transfer and breathing patterns were measured with structured light plethysmography. Continuous data were compared with an independent t-test or Mann Whitney-U test (depending on distribution) and nominal data were compared using a Fisher's exact test (for 2 categories in 2 groups) or a chi-squared test (for > 2 categories in 2 groups). A p-value of < 0.05 was taken to be statistically significant. RESULTS: We found evidence of pulmonary restriction (reduced vital capacity and/or alveolar volume) in 65.4% of all patients. 36.1% of all patients has a reduced transfer factor (TLCO) but the majority of these (78.1%) had a preserved/increased transfer coefficient (KCO), suggesting an extrapulmonary cause. There were no major differences between ITU and ward lung function, although KCO alone was higher in the ITU patients (p = 0.03). This could be explained partly by obesity, respiratory muscle fatigue, localised microvascular changes, or haemosiderosis from lung damage. Abnormal breathing patterns were observed in 18.8% of subjects, although no consistent pattern of breathing pattern abnormalities was evident. CONCLUSIONS: An "extrapulmonary restrictive" like pattern appears to be a common phenomenon in previously admitted COVID-19 survivors. Whilst the cause of this is not clear, the effects seem to be similar on patients whether or not they received mechanical ventilation or had ward based respiratory support/supplemental oxygen.


Assuntos
COVID-19/fisiopatologia , Hospitalização/tendências , Pulmão/fisiologia , Mecânica Respiratória/fisiologia , Espirometria/tendências , Sobreviventes , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/terapia , Feminino , Humanos , Pneumopatias/diagnóstico , Pneumopatias/fisiopatologia , Pneumopatias/terapia , Masculino , Pessoa de Meia-Idade , Alta do Paciente/tendências , Testes de Função Respiratória/métodos , Testes de Função Respiratória/tendências , Espirometria/métodos , Adulto Jovem
6.
Antioxidants (Basel) ; 10(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070267

RESUMO

Reflex increases in breathing in response to acute hypoxia are dependent on activation of the carotid body (CB)-A specialised peripheral chemoreceptor. Central to CB O2-sensing is their unique mitochondria but the link between mitochondrial inhibition and cellular stimulation is unresolved. The objective of this study was to evaluate if ex vivo intact CB nerve activity and in vivo whole body ventilatory responses to hypoxia were modified by alterations in succinate metabolism and mitochondrial ROS (mitoROS) generation in the rat. Application of diethyl succinate (DESucc) caused concentration-dependent increases in chemoafferent frequency measuring approximately 10-30% of that induced by severe hypoxia. Inhibition of mitochondrial succinate metabolism by dimethyl malonate (DMM) evoked basal excitation and attenuated the rise in chemoafferent activity in hypoxia. However, approximately 50% of the response to hypoxia was preserved. MitoTEMPO (MitoT) and 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SKQ1) (mitochondrial antioxidants) decreased chemoafferent activity in hypoxia by approximately 20-50%. In awake animals, MitoT and SKQ1 attenuated the rise in respiratory frequency during hypoxia, and SKQ1 also significantly blunted the overall hypoxic ventilatory response (HVR) by approximately 20%. Thus, whilst the data support a role for succinate and mitoROS in CB and whole body O2-sensing in the rat, they are not the sole mediators. Treatment of the CB with mitochondrial selective antioxidants may offer a new approach for treating CB-related cardiovascular-respiratory disorders.

7.
Pflugers Arch ; 473(1): 37-51, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210151

RESUMO

Carotid body (CB) hyperactivity promotes hypertension in response to chronic intermittent hypoxia (CIH). The plasma concentration of adrenaline is reported to be elevated in CIH and our previous work suggests that adrenaline directly activates the CB. However, a role for chronic adrenergic stimulation in mediating CB hyperactivity is currently unknown. This study evaluated whether beta-blocker treatment with propranolol (Prop) prevented the development of CB hyperactivity, vascular sympathetic nerve growth and hypertension caused by CIH. Adult male Wistar rats were assigned into 1 of 4 groups: Control (N), N + Prop, CIH and CIH + Prop. The CIH paradigm consisted of 8 cycles h-1, 8 h day-1, for 3 weeks. Propranolol was administered via drinking water to achieve a dose of 40 mg kg-1 day-1. Immunohistochemistry revealed the presence of both ß1 and ß2-adrenoceptor subtypes on the CB type I cell. CIH caused a 2-3-fold elevation in basal CB single-fibre chemoafferent activity and this was prevented by chronic propranolol treatment. Chemoafferent responses to hypoxia and mitochondrial inhibitors were attenuated by propranolol, an effect that was greater in CIH animals. Propranolol decreased respiratory frequency in normoxia and hypoxia in N and CIH. Propranolol also abolished the CIH mediated increase in vascular sympathetic nerve density. Arterial blood pressure was reduced in propranolol groups during hypoxia. Propranolol exaggerated the fall in blood pressure in most (6/7) CIH animals during hypoxia, suggestive of reduced sympathetic tone. These findings therefore identify new roles for ß-adrenergic stimulation in evoking CB hyperactivity, sympathetic vascular hyperinnervation and altered blood pressure control in response to CIH.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Corpo Carotídeo/efeitos dos fármacos , Hipóxia , Propranolol/farmacologia , Antagonistas Adrenérgicos beta , Animais , Dióxido de Carbono , Esquema de Medicação , Masculino , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos
8.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825527

RESUMO

The carotid body (CB) is an important organ located at the carotid bifurcation that constantly monitors the blood supplying the brain. During hypoxia, the CB immediately triggers an alarm in the form of nerve impulses sent to the brain. This activates protective reflexes including hyperventilation, tachycardia and vasoconstriction, to ensure blood and oxygen delivery to the brain and vital organs. However, in certain conditions, including obstructive sleep apnea, heart failure and essential/spontaneous hypertension, the CB becomes hyperactive, promoting neurogenic hypertension and arrhythmia. G-protein-coupled receptors (GPCRs) are very highly expressed in the CB and have key roles in mediating baseline CB activity and hypoxic sensitivity. Here, we provide a brief overview of the numerous GPCRs that are expressed in the CB, their mechanism of action and downstream effects. Furthermore, we will address how these GPCRs and signaling pathways may contribute to CB hyperactivity and cardiovascular and respiratory disease. GPCRs are a major target for drug discovery development. This information highlights specific GPCRs that could be targeted by novel or existing drugs to enable more personalized treatment of CB-mediated cardiovascular and respiratory disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Corpo Carotídeo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Doenças Respiratórias/metabolismo , Adenosina/metabolismo , Animais , Doenças Cardiovasculares/fisiopatologia , Corpo Carotídeo/fisiopatologia , Dopamina/metabolismo , Epinefrina/metabolismo , Humanos , Hipóxia/metabolismo , Transdução de Sinais , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia
9.
Adv Physiol Educ ; 44(3): 436-443, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697152

RESUMO

The laboratory practical reported here is based in Poiseuille's law and utilizes low-cost laboratory consumable items, thereby making it easy to deploy in any teaching laboratory. In the practical, students take an experimental approach of individually changing physical variables and measuring fluid flow rates. Plotting these results allows them to discuss the effect each variable has on flow. Furthermore, students enhance their appreciation of experimental errors and variability by making repeat measurements. In the follow-up teaching session, the students are encouraged to apply their experimental findings to the cardiovascular system and the control of blood flow both at rest and under conditions of altered cardiac output, such as during exercise. By tackling the topic of flow control as a core concept, it allows the students to then apply their understanding in wider physiological contexts, such as airflow in the respiratory system.


Assuntos
Sistema Cardiovascular , Estudantes , Exercício Físico , Hemodinâmica , Humanos
10.
Respir Physiol Neurobiol ; 265: 92-99, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29807139

RESUMO

Ventilatory and neuroendocrine counter-regulatory responses during hypoglycaemia are essential in order to maintain glycolysis and prevent rises in PaCO2 leading to systemic acidosis. The mammalian carotid body has emerged as an important driver of hyperpnoea and glucoregulation in hypoglycaemia. However, the adequate stimulus for CB stimulation in hypoglycaemia has remained controversial for over a decade. The recent finding that adrenaline is a physiological activator of CB in hypoglycaemia raises the intriguing possibility that CB stimulation and hyperpnoea may be necessary to maintain pH in other adrenaline-related hypermetabolic states such as exercise. This review will therefore focus on 1) The important functional contribution of the CB in the counter-regulatory and ventilatory response to hypoglycaemia, 2) the proposed mechanisms that cause CB stimulation in hypoglycaemia including hormonal activation by adrenaline and direct low glucose sensing and 3) the possible pathological consequences of repetitive CB activation by adrenaline that could potentially be targeted to reduce CB-mediated cardiovascular disease.


Assuntos
Dióxido de Carbono/metabolismo , Doenças Cardiovasculares/fisiopatologia , Corpo Carotídeo/fisiologia , Epinefrina/fisiologia , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Hipercapnia/fisiopatologia , Hipoglicemia/fisiopatologia , Animais , Doenças Cardiovasculares/metabolismo , Corpo Carotídeo/metabolismo , Corpo Carotídeo/fisiopatologia , Epinefrina/metabolismo , Humanos , Hipercapnia/metabolismo , Hipoglicemia/metabolismo
11.
Front Physiol ; 9: 562, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867584

RESUMO

The mammalian carotid body (CB) is the primary arterial chemoreceptor that responds to acute hypoxia, initiating systemic protective reflex responses that act to maintain O2 delivery to the brain and vital organs. The CB is unique in that it is stimulated at O2 levels above those that begin to impact on the metabolism of most other cell types. Whilst a large proportion of the CB chemotransduction cascade is well defined, the identity of the O2 sensor remains highly controversial. This short review evaluates whether the mitochondria can adequately function as acute O2 sensors in the CB. We consider the similarities between mitochondrial poisons and hypoxic stimuli in their ability to activate the CB chemotransduction cascade and initiate rapid cardiorespiratory reflexes. We evaluate whether the mitochondria are required for the CB to respond to hypoxia. We also discuss if the CB mitochondria are different to those located in other non-O2 sensitive cells, and what might cause them to have an unusually low O2 binding affinity. In particular we look at the potential roles of competitive inhibitors of mitochondrial complex IV such as nitric oxide in establishing mitochondrial and CB O2-sensitivity. Finally, we discuss novel signaling mechanisms proposed to take place within and downstream of mitochondria that link mitochondrial metabolism with cellular depolarization.

12.
J Physiol ; 596(15): 3137-3148, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28560821

RESUMO

KEY POINTS: Carotid body dysfunction is recognized as a cause of hypertension in a number of cardiorespiratory diseases states and has therefore been identified as a potential therapeutic target. Purinergic transmission is an important element of the carotid body chemotransduction pathway. We show that inhibition of ecto-5'-nucleotidase (CD73) in vitro reduces carotid body basal discharge and responses to hypoxia and mitochondrial inhibition. Additionally, inhibition of CD73 in vivo decreased the hypoxic ventilatory response, reduced the hypoxia-induced heart rate elevation and exaggerated the blood pressure decrease in response to hypoxia. Our data show CD73 to be a novel regulator of carotid body sensory function and therefore suggest that this enzyme may offer a new target for reducing carotid body activity in selected cardiovascular diseases. ABSTRACT: Augmented sensory neuronal activity from the carotid body (CB) has emerged as a principal cause of hypertension in a number of cardiovascular related pathologies, including obstructive sleep apnoea, heart failure and diabetes. Development of new targets and pharmacological treatment strategies aiming to reduce CB sensory activity may thus improve outcomes in these key patient cohorts. The present study investigated whether ecto-5'-nucleotidase (CD73), an enzyme that generates adenosine, is functionally important in modifying CB sensory activity and cardiovascular respiratory responses to hypoxia. Inhibition of CD73 by α,ß-methylene ADP (AOPCP) in the whole CB preparation in vitro reduced basal discharge frequency by 76 ± 5% and reduced sensory activity throughout graded hypoxia. AOPCP also significantly attenuated elevations in sensory activity evoked by mitochondrial inhibition. These effects were mimicked by antagonism of adenosine receptors with 8-(p-sulfophenyl) theophylline. Infusion of AOPCP in vivo significantly decreased the hypoxic ventilatory response (Δ V̇E control 74 ± 6%, Δ V̇E AOPCP 64 ± 5%, P < 0.05). AOPCP also modified cardiovascular responses to hypoxia, as indicated by reduced elevations in heart rate and exaggerated changes in femoral vascular conductance and mean arterial blood pressure. Thus we identify CD73 as a novel regulator of CB sensory activity. Future investigations are warranted to clarify whether inhibition of CD73 can effectively reduce CB activity in CB-mediated cardiovascular pathology.


Assuntos
5'-Nucleotidase/fisiologia , Corpo Carotídeo/fisiologia , Adenosina/fisiologia , Animais , Pressão Sanguínea , Frequência Cardíaca , Hipóxia/fisiopatologia , Masculino , Ventilação Pulmonar , Ratos Wistar
13.
Sci Rep ; 7(1): 9079, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831049

RESUMO

Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Desenvolvimento Fetal , Hipóxia/metabolismo , Placenta/metabolismo , Complicações na Gravidez/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores , Feminino , Feto/metabolismo , Expressão Gênica , Microscopia Confocal , Organogênese , Estresse Oxidativo , Gravidez , Ratos , Espécies Reativas de Oxigênio/metabolismo
14.
J Physiol ; 594(15): 4439-52, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27027261

RESUMO

KEY POINTS: Hypoglycaemia is counteracted by release of hormones and an increase in ventilation and CO2 sensitivity to restore blood glucose levels and prevent a fall in blood pH. The full counter-regulatory response and an appropriate increase in ventilation is dependent on carotid body stimulation. We show that the hypoglycaemia-induced increase in ventilation and CO2 sensitivity is abolished by preventing adrenaline release or blocking its receptors. Physiological levels of adrenaline mimicked the effect of hypoglycaemia on ventilation and CO2 sensitivity. These results suggest that adrenaline, rather than low glucose, is an adequate stimulus for the carotid body-mediated changes in ventilation and CO2 sensitivity during hypoglycaemia to prevent a serious acidosis in poorly controlled diabetes. ABSTRACT: Hypoglycaemia in vivo induces a counter-regulatory response that involves the release of hormones to restore blood glucose levels. Concomitantly, hypoglycaemia evokes a carotid body-mediated hyperpnoea that maintains arterial CO2 levels and prevents respiratory acidosis in the face of increased metabolism. It is unclear whether the carotid body is directly stimulated by low glucose or by a counter-regulatory hormone such as adrenaline. Minute ventilation was recorded during infusion of insulin-induced hypoglycaemia (8-17 mIU kg(-1)  min(-1) ) in Alfaxan-anaesthetised male Wistar rats. Hypoglycaemia significantly augmented minute ventilation (123 ± 4 to 143 ± 7 ml min(-1) ) and CO2 sensitivity (3.3 ± 0.3 to 4.4 ± 0.4 ml min(-1)  mmHg(-1) ). These effects were abolished by either ß-adrenoreceptor blockade with propranolol or adrenalectomy. In this hypermetabolic, hypoglycaemic state, propranolol stimulated a rise in P aC O2, suggestive of a ventilation-metabolism mismatch. Infusion of adrenaline (1 µg kg(-1)  min(-1) ) increased minute ventilation (145 ± 4 to 173 ± 5 ml min(-1) ) without altering P aC O2 or pH and enhanced ventilatory CO2 sensitivity (3.4 ± 0.4 to 5.1 ± 0.8 ml min(-1)  mmHg(-1) ). These effects were attenuated by either resection of the carotid sinus nerve or propranolol. Physiological concentrations of adrenaline increased the CO2 sensitivity of freshly dissociated carotid body type I cells in vitro. These findings suggest that adrenaline release can account for the ventilatory hyperpnoea observed during hypoglycaemia by an augmented carotid body and whole body ventilatory CO2 sensitivity.


Assuntos
Dióxido de Carbono/fisiologia , Corpo Carotídeo/fisiologia , Epinefrina/fisiologia , Hipoglicemia/fisiopatologia , Ventilação Pulmonar/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/fisiologia , Hiperinsulinismo/fisiopatologia , Masculino , Propranolol/farmacologia , Ratos Wistar
15.
Adv Exp Med Biol ; 860: 245-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303488

RESUMO

Models of chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnoea (OSA), have demonstrated dysregulation of the cardiovascular and respiratory systems resulting in hypertension, cardiac hypertrophy and alterations in the hypoxic ventilatory response (HVR) due to changes in sympathetic and respiratory control by the carotid body. In the UK, treatment of OSA is only offered to patients with an apnoea-hypopnoea index (AHI) >15, we investigated whether mild CIH produced significant pathophysiological changes, which might inform treatment guidelines.Rats were exposed to CIH (6 h(-1), 8 h day(-1), 5 % O(2) nadir) for 2 weeks and then arterial blood pressure (ABP), heart rate (HR) and ventilation were recorded in these and normoxic control rats (N) under Alfaxan anaesthesia, at baseline and in response to Dejours test, graded hypoxia and hypercapnia. Hearts were analysed post-mortem.CIH induced significant increases in baseline ABP (142 ± 5 vs 122 ± 2 mmHg), HR (448 ± 9 vs 412 ± 5 bpm) and cardiac mass (3.5 ± 0.1 vs 2.7 ± 0.1 g kg body mass(-1)) as a result of a selective left ventricular hypertrophy (1.6 ± 0.1 vs 1.3 ± 0.08 g kg body mass(-1); FCSA 464 ± 32 µm(2) vs 314 ± 9 µm(2)). There was no significant difference between N and CIH in baseline respiration or the response to Dejours test, graded hypoxia and hypercapnia.These results demonstrate that mild CIH can induce the significant cardiovascular changes associated with OSA without overt changes in respiratory function. Given evidence that CIH changes carotid body sensory activity, a possible explanation for these results is that there is differential integration of chemoreceptor input with respiratory and cardiac sympathetic outputs.


Assuntos
Corpo Carotídeo/fisiologia , Hipóxia/fisiopatologia , Respiração , Animais , Pressão Sanguínea , Doença Crônica , Frequência Cardíaca , Masculino , Ratos , Ratos Wistar
16.
Hypertension ; 64(6): 1321-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267800

RESUMO

Adverse conditions prenatally increase the risk of cardiovascular disease, including hypertension. Chronic hypoxia in utero (CHU) causes endothelial dysfunction, but whether sympathetic vasoconstrictor nerve functioning is altered is unknown. We, therefore, compared in male CHU and control (N) rats muscle sympathetic nerve activity, vascular sympathetic innervation density, and mechanisms of sympathetic vasoconstriction. In young (Y)-CHU and Y-N rats (≈3 months), baseline arterial blood pressure was similar. However, tonic muscle sympathetic nerve activity recorded focally from arterial vessels of spinotrapezius muscle had higher mean frequency in Y-CHU than in Y-N rats (0.56±0.075 versus 0.33±0.036 Hz), and the proportions of single units with high instantaneous frequencies (1-5 and 6-10 Hz) being greater in Y-CHU rats. Sympathetic innervation density of tibial arteries was ≈50% greater in Y-CHU than in Y-N rats. Increases in femoral vascular resistance evoked by sympathetic stimulation at low frequency (2 Hz for 2 minutes) and bursts at 20 Hz were substantially smaller in Y-CHU than in Y-N rats. In Y-N only, the neuropeptide Y Y1-receptor antagonist BIBP3226 attenuated these responses. By contrast, baseline arterial blood pressure was higher in middle-aged (M)-CHU than in M-N rats (≈9 months; 139±3 versus 126±3 mm Hg, respectively). BIBP3226 had no effect on femoral vascular resistance increases evoked by 2 Hz or 20 Hz bursts in M-N or M-CHU rats. These results indicate that fetal programming induced by prenatal hypoxia causes an increase in centrally generated muscle sympathetic nerve activity in youth and hypertension by middle age. This is associated with blunting of sympathetically evoked vasoconstriction and its neuropeptide Y component that may reflect premature vascular aging and contribute to increased risk of cardiovascular disease.


Assuntos
Hipertensão/etiologia , Hipóxia/complicações , Músculo Esquelético/inervação , Neuropeptídeo Y/metabolismo , Prenhez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Envelhecimento , Animais , Vasos Sanguíneos/inervação , Vasos Sanguíneos/fisiopatologia , Modelos Animais de Doenças , Feminino , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Músculo Esquelético/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Resistência Vascular , Vasoconstrição
17.
J Physiol ; 588(Pt 24): 5115-25, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20962006

RESUMO

Suboptimal conditions in utero can have long-lasting effects including increased risk of cardiovascular disease in adult life. Such programming effects may be induced by chronic systemic hypoxia in utero (CHU). We have investigated how CHU affects cardiovascular responses evoked by acute systemic hypoxia in adult male offspring, recognising that adenosine contributes to hypoxia-induced muscle vasodilatation and bradycardia by acting on A(1) receptors in normal (N) rats. In the present study, dams were housed in a hypoxic chamber at 12% O(2) for the second half of gestation; offspring were born and reared in air until 9-10 weeks of age. Under anaesthesia, acute systemic hypoxia (breathing 8% O(2) for 5 min) evoked similar biphasic tachycardia/bradycardia, fall in arterial pressure and increase in femoral vascular conductance (FVC) in N and CHU rats (+2.0 vs. +2.7 conductance units respectively). However, in CHU rats, neither the non-selective adenosine receptor antagonist 8-sulphophenyltheopylline (8-SPT), nor the A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) affected the increase in FVC, but DPCPX attenuated the hypoxia-induced bradycardia. Further, in N and CHU rats, 5 min infusion of adenosine induced similar increases in FVC; in CHU rats, DPCPX reduced the adenosine-induced increase in FVC (by >50%) and accentuated the concomitant tachycardia. These results suggest that CHU rats have functional A(1) receptors in heart and vasculature, but the release and/or vasodilator influence of adenosine on the endothelium in acute hypoxia is attenuated and replaced by other dilator factors. Such changes from normal endothelial function may have implications for general cardiovascular regulation.


Assuntos
Adenosina/metabolismo , Hipóxia/metabolismo , Músculo Esquelético/irrigação sanguínea , Receptor A1 de Adenosina/metabolismo , Vasodilatação/fisiologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Animais , Bradicardia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos , Ratos Wistar , Teofilina/análogos & derivados , Teofilina/farmacologia , Xantinas/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-19712745

RESUMO

Acute cooling significantly increases energy demand in non-hibernators for the defence of core temperature but the contribution of the liver to thermogenesis is poorly understood. A two-tracer method to estimate lipid metabolism in cold-naïve control (CON) and cold-acclimated (CA) rats was employed to quantify hepatic rates of fat metabolism. Both fenofibrate, to increase liver mass and fat oxidation and dichloroacetate (DCA) to inhibit fat oxidation were used to alter lipid metabolism in CON animals. Following acute cooling, CA led to a doubling of the time to reach a core temperature 25 degrees C (P<0.001), whereas DCA treatment decreased time of cooling (P<0.01). DCA-treatment increased the gradient of Arrhenius-transformed rate-pressure product (P<0.01). CA increased both palmitate uptake (P<0.001) and beta-oxidation (P<0.01) whilst DCA treatment decreased uptake (P<0.01) and beta-oxidation (P<0.05). Tissue-specific estimates of metabolism revealed that CA led to a 12-fold increase in beta-oxidation for brown adipose tissue (P<0.001) whilst fenofibrate halved beta-oxidation in the liver (P<0.01) despite doubling the liver mass (P<0.001) and DCA decreased hepatic beta-oxidation to 15% of control levels. Taken together, these results suggest that the liver has minimal contribution to thermogenesis in the rat, with brown adipose tissue significantly increasing both fat uptake and oxidation in response to CA.


Assuntos
Temperatura Corporal , Temperatura Baixa , Metabolismo Energético , Adaptação Fisiológica , Animais , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Oxirredução , Ratos
19.
J Physiol ; 582(Pt 3): 1349-59, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17510186

RESUMO

There is evidence that sympathetically evoked vasoconstriction in skeletal muscle is blunted in systemic hypoxia, but the mechanisms underlying this phenomenon are not clear. In Saffan-anaesthetized Wistar rats, we have studied the role of alpha(2)-adrenoceptors and neuropeptide Y (NPY) Y(1) receptors in mediating vasoconstriction evoked by direct stimulation of the lumbar sympathetic chain by different patterns of impulses in normoxia (N) and systemic hypoxia (H: breathing 8% O(2)). Patterns comprised 120 impulses delivered in bursts over a 1 min period at 40 or 20 Hz, or continuously at 2 Hz. Hypoxia attenuated the evoked increases in femoral vascular resistance (FVR) by all patterns, the response to 2 Hz being most affected (40 Hz bursts: N = 3.25 +/- 0.75 arbitrary resistance units (RU); H = 1.14 +/- 0.29 RU). Yohimbine (Yoh, alpha(2)-adrenoceptor antagonist) or BIBP 3226 (Y(1)-receptor antagonist) did not affect baseline FVR. In normoxia, Yoh attenuated the responses evoked by high frequency bursts and 2 Hz, whereas BIBP 3226 only attenuated the response to 40 Hz (40 Hz bursts: N + Yoh = 2.1 +/- 0.59 RU; N + BIBP 3226 = 1.9 +/- 0.4 RU). In hypoxia, Yoh did not further attenuate the evoked responses, but BIBP 3226 further attenuated the response to 40 Hz bursts. These results indicate that neither alpha(2)-adrenoceptors nor Y(1) receptors contribute to basal vascular tone in skeletal muscle, but both contribute to constrictor responses evoked by high frequency bursts of sympathetic activity. We propose that in systemic hypoxia, the alpha(2)-mediated component represents about 50% of the sympathetically evoked constriction that is blunted, whereas the contribution made by Y(1) receptors is resistant. Thus we suggest the importance of NPY in the regulation of FVR and blood pressure increases during challenges such as systemic hypoxia.


Assuntos
Hipóxia/fisiopatologia , Receptores Adrenérgicos alfa 2/fisiologia , Receptores de Neuropeptídeo Y/fisiologia , Vasoconstrição/fisiologia , Animais , Estimulação Elétrica , Membro Posterior , Masculino , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Receptores de Neuropeptídeo Y/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Ioimbina/farmacologia
20.
J Physiol ; 555(Pt 3): 793-804, 2004 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-14724185

RESUMO

We studied the role of nitric oxide (NO) in blunting sympathetically evoked muscle vasoconstriction during acute and chronic systemic hypoxia. Experiments were performed on anaesthetized normoxic (N) and chronically hypoxic (CH) rats that had been acclimated to 12% O(2) for 3-4 weeks. The lumbar sympathetic chain was stimulated for 1 min with bursts at 20 or 40 Hz and continuously at 2 Hz. In N rats, acute hypoxia (breathing 8% O(2)) reduced baseline femoral vascular resistance (FVR) and depressed increases in FVR evoked by all three patterns of stimulation, but infusion of the NO donor sodium nitroprusside (SNP), so as to similarly reduce baseline FVR, did not affect sympathetically evoked responses. Blockade of NO synthase (NOS) with L-NAME increased baseline FVR and facilitated the sympathetically evoked increases in FVR, but when baseline FVR was restored by SNP infusion, these evoked responses were restored. Acute hypoxia after L-NAME still reduced baseline FVR and depressed evoked responses. In CH rats breathing 12% O(2), baseline FVR was lower than in N rats breathing air, but L-NAME had qualitatively similar effects on baseline FVR and sympathetically evoked increases in FVR. SNP similarly restored baseline FVR and evoked responses. Inhibition of neuronal NOS or inducible NOS did not affect baselines, or evoked responses. We propose that in N and CH rats sympathetically evoked muscle vasoconstriction is modulated by tonically released NO, but not depressed by additional NO released on sympathetic activation. The present results suggest that hypoxia-induced blunting of sympathetic vasoconstriction in skeletal muscle is not mediated by NO.


Assuntos
Hipóxia/fisiopatologia , Óxido Nítrico/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição/fisiologia , Doença Aguda , Animais , Doença Crônica , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Membro Posterior/irrigação sanguínea , Hipóxia/metabolismo , Imidazóis/farmacologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II , Distribuição Aleatória , Ratos , Ratos Wistar , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...