Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Bioengineering (Basel) ; 11(5)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38790325

RESUMO

Recent studies have highlighted the possibility of using surface electromyographic (EMG) signals to develop human-computer interfaces that are also able to recognize complex motor tasks involving the hand as the handwriting of digits. However, the automatic recognition of words from EMG information has not yet been studied. The aim of this study is to investigate the feasibility of using combined forearm and wrist EMG probes for solving the handwriting recognition problem of 30 words with consolidated machine-learning techniques and aggregating state-of-the-art features extracted in the time and frequency domains. Six healthy subjects, three females and three males aged between 25 and 40 years, were recruited for the study. Two tests in pattern recognition were conducted to assess the possibility of classifying fine hand movements through EMG signals. The first test was designed to assess the feasibility of using consolidated myoelectric control technology with shallow machine-learning methods in the field of handwriting detection. The second test was implemented to assess if specific feature extraction schemes can guarantee high performances with limited complexity of the processing pipeline. Among support vector machine, linear discriminant analysis, and K-nearest neighbours (KNN), the last one showed the best classification performances in the 30-word classification problem, with a mean accuracy of 95% and 85% when using all the features and a specific feature set known as TDAR, respectively. The obtained results confirmed the validity of using combined wrist and forearm EMG data for intelligent handwriting recognition through pattern recognition approaches in real scenarios.

2.
J Electromyogr Kinesiol ; 73: 102839, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948840

RESUMO

Low back pain (LBP) is a leading cause of disability in the workplace, often caused by manually lifting of heavy loads. Instrumental-based assessment tools are used to quantitatively assess the biomechanical risk of lifting activities. This study aims to verify that, during the execution of fatiguing frequency-dependent lifting, high-density surface electromyography (HDsEMG) allows the discrimination of healthy controls (HC) versus people with LBP and biomechanical risk levels. Fifteen HC and eight people with LBP performed three lifting tasks with a progressively increasing lifting index, each lasting 15 min. Erector spinae (ES) activity was recorded using HDsEMG and amplitude parameters were calculated to characterize the spatial distribution of muscle activity. LBP group showed a less ES activity than HC (lower root mean square across the grid and of the activation region) and an involvement of the same muscular area across the task (lower coefficient of variation of the center of gravity of muscle activity). The results indicate the usefulness of HDsEMG parameters to classify risk levels for both HC and LBP groups and to determine differences between them. The findings suggest that the use of HDsEMG could expand the capabilities of existing instrumental-based tools for biomechanical risk classification during lifting activities.


Assuntos
Dor Lombar , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Fadiga Muscular , Músculos Paraespinais
3.
Front Neurorobot ; 17: 1183164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425334

RESUMO

Introduction: Human robot collaboration is quickly gaining importance in the robotics and ergonomics fields due to its ability to reduce biomechanical risk on the human operator while increasing task efficiency. The performance of the collaboration is typically managed by the introduction of complex algorithms in the robot control schemes to ensure optimality of its behavior; however, a set of tools for characterizing the response of the human operator to the movement of the robot has yet to be developed. Methods: Trunk acceleration was measured and used to define descriptive metrics during various human robot collaboration strategies. Recurrence quantification analysis was used to build a compact description of trunk oscillations. Results and discussion: The results show that a thorough description can be easily developed using such methods; moreover, the obtained values highlight that, when designing strategies for human robot collaboration, ensuring that the subject maintains control of the rhythm of the task allows to maximize comfort in task execution, without affecting efficiency.

4.
Sensors (Basel) ; 23(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299732

RESUMO

The increasing incidence of cardiovascular diseases (CVDs) is reflected in additional costs for healthcare systems all over the world. To date, pulse transit time (PTT) is considered a key index of cardiovascular health status and for diagnosis of CVDs. In this context, the present study focuses on a novel image analysis-based method for PTT estimation through the application of equivalent time sampling. The method, which post-processes color Doppler videos, was tested on two different setups: a Doppler flow phantom set in pulsatile mode and an in-house arterial simulator. In the former, the Doppler shift was due to the echogenic properties of the blood mimicking fluid only, since the phantom vessels are non-compliant. In the latter, the Doppler signal relied on the wall movement of compliant vessels in which a fluid with low echogenic properties was pumped. Therefore, the two setups allowed the measurement of the flow average velocity (FAV) and the pulse wave velocity (PWV), respectively. Data were collected through an ultrasound diagnostic system equipped with a phased array probe. Experimental outcomes confirm that the proposed method can represent an alternative tool for the local measurement of both FAV in non-compliant vessels and PWV in compliant vessels filled with low echogenic fluids.


Assuntos
Doenças Cardiovasculares , Análise de Onda de Pulso , Humanos , Análise de Onda de Pulso/métodos , Doenças Cardiovasculares/diagnóstico por imagem , Artérias , Ultrassonografia , Velocidade do Fluxo Sanguíneo
5.
Clin Rehabil ; 37(12): 1670-1683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37350084

RESUMO

OBJECTIVE: This study presents the walking abilities of participants fitted with transfemoral bone-anchored prostheses using a total of 14 gait parameters. DESIGN: Two-centre retrospective cross-sectional comparative study. SETTING: Research facilities equipped with tridimensional motion capture systems. PARTICIPANTS: Two control arms included eight able-bodied participants arm (54 ± 9 years, 1.75 ± 0.07 m, 76 ± 7 kg) and nine participants fitted with transfemoral socket-suspended prostheses arm (59 ± 9 years, 1.73 ± 0.07 m, 80 ± 16 kg). The intervention arm included nine participants fitted with transfemoral bone-anchored prostheses arm (51 ± 13 years, 1.78 ± 0.09 m, 87.3 ± 16.1 kg). INTERVENTION: Fitting of transfemoral bone-anchored prostheses. MAIN MEASURES: Comparisons were performed for two spatio-temporal, three spatial and nine temporal gait parameters. RESULTS: The cadence and speed of walking were 107 ± 6 steps/min and 1.23 ± 0.19 m/s for the able-bodied participants arm, 88 ± 7 steps/min and 0.87 ± 0.17 m/s for the socket-suspended prosthesis arm, and 96 ± 6 steps/min and 1.03 ± 0.17 m/s for bone-anchored prosthesis arm, respectively. Able-bodied participants and bone-anchored prosthesis arms were comparable in age, height, and body mass index as well as cadence and speed of walking, but the able-bodied participant arm showed a swing phase 31% shorter. Bone-anchored and socket-suspended prostheses arms were comparable for age, height, mass, and body mass index as well as cadence and speed of walking, but the bone-anchored prosthesis arm showed a step width and duration of double support in seconds 65% and 41% shorter, respectively. CONCLUSIONS: Bone-anchored and socket-suspended prostheses restored equally well the gait parameters at a self-selected speed. This benchmark data provides new insights into the walking ability of individuals using transfemoral bionics bone-anchored prostheses.


Assuntos
Amputados , Membros Artificiais , Prótese Ancorada no Osso , Humanos , Amputação Cirúrgica , Estudos Retrospectivos , Estudos Transversais , Marcha , Caminhada , Fenômenos Biomecânicos , Desenho de Prótese
6.
J Neuroeng Rehabil ; 20(1): 46, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055813

RESUMO

The characterization of both limbs' behaviour in prosthetic gait is of key importance for improving the prosthetic components and increasing the biomechanical capability of trans-femoral amputees. When characterizing human gait, modular motor control theories have been proven to be powerful in providing a compact description of the gait patterns. In this paper, the planar covariation law of lower limb elevation angles is proposed as a compact, modular description of prosthetic gait; this model is exploited for a comparison between trans-femoral amputees walking with different prosthetic knees and control subjects walking at different speeds. Results show how the planar covariation law is maintained in prostheses users, with a similar spatial organization and few temporal differences. Most of the differences among the different prosthetic knees are found in the kinematic coordination patterns of the sound side. Moreover, different geometrical parameters have been calculated over the common projected plane, and their correlation with classical gait spatiotemporal and stability parameters has been investigated. The results from this latter analysis have highlighted a correlation with several parameters of gait, suggesting that this compact description of kinematics unravels a significant biomechanical meaning. These results can be exploited to guide the control mechanisms of prosthetic devices based purely on the measurement of relevant kinematic quantities.


Assuntos
Amputados , Membros Artificiais , Humanos , Fenômenos Biomecânicos , Marcha , Caminhada , Fêmur
8.
Front Rehabil Sci ; 3: 804746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189078

RESUMO

Prosthetic gait implies the use of compensatory motor strategies, including alterations in gait biomechanics and adaptations in the neural control mechanisms adopted by the central nervous system. Despite the constant technological advancements in prostheses design that led to a reduction in compensatory movements and an increased acceptance by the users, a deep comprehension of the numerous factors that influence prosthetic gait is still needed. The quantitative prosthetic gait analysis is an essential step in the development of new and ergonomic devices and to optimize the rehabilitation therapies. Nevertheless, the assessment of prosthetic gait is still carried out by a heterogeneous variety of methodologies, and this limits the comparison of results from different studies, complicating the definition of shared and well-accepted guidelines among clinicians, therapists, physicians, and engineers. This perspective article starts from the results of a project funded by the Italian Worker's Compensation Authority (INAIL) that led to the generation of an extended dataset of measurements involving kinematic, kinetic, and electrophysiological recordings in subjects with different types of amputation and prosthetic components. By encompassing different studies published along the project activities, we discuss the specific information that can be extracted by different kinds of measurements, and we here provide a methodological perspective related to multimodal prosthetic gait assessment, highlighting how, for designing improved prostheses and more effective therapies for patients, it is of critical importance to analyze movement neural control and its mechanical actuation as a whole, without limiting the focus to one specific aspect.

9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4105-4108, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086023

RESUMO

Muscle synergy analysis has been widely adopted in the literature for the analysis of upper limb surface electromyographic signals during reaching tasks and for the prediction of movement direction for myoelectric control purposes. However, previous studies have characterized movements in constrained or semi-constrained scenarios, in which the subjects performing the movement were instructed to reach particular targets or were given some kind of feedback. In this work, the same synergy model has been applied to a completely unconstrained upper limb reaching experiment, with the aim of classifying the height of the target starting from the activity of the synergies. Results show that the synergistic model is able to extract compact features that can identify with good performance three different reaching heights. Moreover, this representation is able to isolate the signals that contain predictive information about the movement direction from the ones that are related to movement timing; this, together with the good performance of the synergy-based classifier supports the proposal of applying this model to the pre-processing of electromyographic signals when dealing with control systems that use signals from multiple muscles to predict movements.


Assuntos
Movimento , Músculo Esquelético , Estatura , Eletromiografia , Humanos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Extremidade Superior/fisiologia
10.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080818

RESUMO

Mean and Median frequency are typically used for detecting and monitoring muscle fatigue. These parameters are extracted from power spectral density whose estimate can be obtained by several techniques, each one characterized by advantages and disadvantages. Previous works studied how the implementation settings can influence the performance of these techniques; nevertheless, the estimation results have never been fully evaluated when the power density spectrum is in a low-frequency zone, as happens to the surface electromyography (sEMG) spectrum during muscle fatigue. The latter is therefore the objective of this study that has compared the Welch and the autoregressive parametric approaches on synthetic sEMG signals simulating severe muscle fatigue. Moreover, the sensitivity of both the approaches to the observation duration and to the level of noise has been analyzed. Results showed that the mean frequency greatly depends on the noise level, and that for Signal to Noise Ratio (SNR) less than 10dB the errors make the estimate unacceptable. On the other hand, the error in calculating the median frequency is always in the range 2-10 Hz, so this parameter should be preferred in the tracking of muscle fatigue. Results show that the autoregressive model always outperforms the Welch technique, and that the 3rd order continuously produced accurate and precise estimates; consequently, the latter should be used when analyzing severe fatiguing contraction.


Assuntos
Fadiga Muscular , Músculo Esquelético , Simulação por Computador , Eletromiografia/métodos , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Razão Sinal-Ruído
11.
PLoS One ; 17(8): e0266731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947818

RESUMO

Lifting tasks, among manual material handling activities, are those mainly associated with low back pain. In recent years, several instrumental-based tools were developed to quantitatively assess the biomechanical risk during lifting activities. In this study, parameters related to balance and extracted from the Centre of Pressure (CoP) data series are studied in fatiguing frequency-dependent lifting activities to: i) explore the possibility of classifying people with LBP and asymptomatic people during the execution of task; ii) examine the assessment of the risk levels associated with repetitive lifting activities, iii) enhance current understanding of postural control strategies during lifting tasks. Data were recorded from 14 asymptomatic participants and 7 participants with low back pain. The participants performed lifting tasks in three different lifting conditions (with increasing lifting frequency and risk levels) and kinetic and surface electromyography (sEMG) data were acquired. Kinetic data were used to calculated the CoP and parameters extracted from the latter show a discriminant capacity for the groups and the risk levels. Furthermore, sEMG parameters show a trend compatible with myoelectric manifestations of muscular fatigue. Correlation results between sEMG and CoP velocity parameters revealed a positive correlation between amplitude sEMG parameters and CoP velocity in both groups and a negative correlation between frequency sEMG parameters and CoP velocity. The current findings suggest that it is possible to quantitatively assess the risk level when monitoring fatiguing lifting tasks by using CoP parameters as well as identify different motor strategies between people with and without LBP.


Assuntos
Dor Lombar , Fadiga Muscular , Fenômenos Biomecânicos , Eletromiografia/métodos , Fadiga , Humanos , Remoção , Músculo Esquelético
12.
Sensors (Basel) ; 22(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684590

RESUMO

The estimation of the sEMG-force relationship is an open problem in the scientific literature; current methods show different limitations and can achieve good performance only on limited scenarios, failing to identify a general solution to the optimization of this kind of analysis. In this work, this relationship has been estimated on two different datasets related to isometric force-tracking experiments by calculating the sEMG amplitude using different fixed-time constant moving-window filters, as well as an adaptive time-varying algorithm. Results show how the adaptive methods might be the most appropriate choice for the estimation of the correlation between the sEMG signal and the force time course. Moreover, the comparison between adaptive and standard filters highlights how the time constants exploited in the estimation strategy is not the only influence factor on this kind of analysis; a time-varying approach is able to constantly capture more information with respect to fixed stationary approaches with comparable window lengths.


Assuntos
Contração Isométrica , Músculo Esquelético , Algoritmos , Eletromiografia/métodos , Fenômenos Mecânicos
13.
Sensors (Basel) ; 22(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35214319

RESUMO

Lifting tasks are manual material-handling activities and are commonly associated with work-related low back disorders. Instrument-based assessment tools are used to quantitatively assess the biomechanical risk associated with lifting activities. This study aims at highlighting different motor strategies in people with and without low back pain (LBP) during fatiguing frequency-dependent lifting tasks by using parameters of muscle coactivation. A total of 15 healthy controls (HC) and eight people with LBP performed three lifting tasks with a progressively increasing lifting index (LI), each lasting 15 min. Bilaterally erector spinae longissimus (ESL) activity and rectus abdominis superior (RAS) were recorded using bipolar surface electromyography systems (sEMG), and the time-varying multi-muscle coactivation function (TMCf) was computed. The TMCf can significantly discriminate each pair of LI and it is higher in LBP than HC. Collectively, our findings suggest that it is possible to identify different motor strategies between people with and without LBP. The main finding shows that LBP, to counteract pain, coactivates the trunk muscles more than HC, thereby adopting a strategy that is stiffer and more fatiguing.


Assuntos
Dor Lombar , Eletromiografia , Humanos , Remoção , Fadiga Muscular , Músculo Esquelético/fisiologia , Músculos Paraespinais
14.
IEEE Rev Biomed Eng ; 15: 169-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34166202

RESUMO

In recent years, statistical studies highlighted an increasing incidence of cardiovascular diseases (CVD) which reflected on additional costs on the healthcare systems worldwide. Pulse wave velocity (PWV) measurement is commonly considered a CVD predictor factor as well as a marker of Arterial Stiffness (AS) since it is closely related to the mechanical characteristics of the arterial wall. An increase in PWV is due to a more rigid arterial system. Because of the prevalence of the elastic component, in young people the PWV is lower than in the elderly. Nowadays, invasive and non-invasive methods for PWV assessment are employed: there is an increasing attention in the development of non-invasive devices which mostly perform a regional PWV measurement (over a long arterial portion) rather than local (over a short arterial portion). The accepted gold-standard for non-invasive AS measurement is the carotid-femoral PWV used to evaluate the arterial damage, the corresponding cardiovascular risk and to adapt the proper therapy. This review article considers the main commercially available devices underlining their operating principles in terms of sensors, execution mode, pulse waveforms acquired, site of measurement, distance and time estimation methods, as well as their main limitations in clinical practice.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Adolescente , Idoso , Artérias , Doenças Cardiovasculares/diagnóstico , Humanos , Análise de Onda de Pulso/métodos
15.
Artigo em Inglês | MEDLINE | ID: mdl-34890331

RESUMO

Muscle synergy analysis is a useful tool for the evaluation of the motor control strategies and for the quantification of motor performance. Among the parameters that can be extracted, most of the information is included in the rank of the modular control model (i.e. the number of muscle synergies that can be used to describe the overall muscle coordination). Even though different criteria have been proposed in literature, an objective criterion for the model order selection is needed to improve reliability and repeatability of MSA results. In this paper, we propose an Akaike Information Criterion (AIC)-based method for model order selection when extracting muscle synergies via the original Gaussian Non-Negative Matrix Factorization algorithm. The traditional AIC definition has been modified based on a correction of the likelihood term, which includes signal dependent noise on the neural commands, and a Discrete Wavelet decomposition method for the proper estimation of the number of degrees of freedom of the model, reduced on a synergy-by-synergy and event-by-event basis. We tested the performance of our method in comparison with the most widespread ones, proving that our criterion is able to yield good and stable performance in selecting the correct model order in simulated EMG data. We further evaluated the performance of our AIC-based technique on two distinct experimental datasets confirming the results obtained with the synthetic signals, with performances that are stable and independent from the nature of the analysed task, from the signal quality and from the subjective EMG pre-processing steps.


Assuntos
Algoritmos , Músculo Esquelético , Eletromiografia , Humanos , Distribuição Normal , Reprodutibilidade dos Testes
16.
Appl Ergon ; 95: 103456, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33984582

RESUMO

Workers often develop low back pain due to manually lifting heavy loads. Instrumental-based assessment tools are used to quantitatively assess the biomechanical risk in lifting activities. This study aims to verify the hypothesis that high-density surface electromyography (HDsEMG) allows an optimized discrimination of risk levels associated with different fatiguing lifting conditions compared to traditional bipolar sEMG. 15 participants performed three lifting tasks with a progressively increasing lifting index (LI) each lasting 15 min. Erector spinae (ES) activity was recorded using both bipolar and HDsEMG systems. The amplitude of both bipolar and HDsEMG can significantly discriminate each pair of LI. HDsEMG data could discriminate across the different LIs starting from the fourth minute of the task while bipolar sEMG could only do so towards the end. The higher discriminative power of HDsEMG data across the lifting tasks makes such methodology a valuable tool to be used to monitor fatigue while lifting and could extend the possibilities offered by currently available instrumental-based tools.


Assuntos
Eletromiografia/métodos , Remoção , Fadiga Muscular , Humanos , Músculo Esquelético
17.
Clin Biomech (Bristol, Avon) ; 78: 105101, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32652381

RESUMO

BACKGROUND: Duchenne muscular dystrophy is an X-linked muscle disease caused by dystrophin absence. Muscle weakness is a major determinant of the gait impairments in patients with Duchenne muscular dystrophy and it affects lower limbs more often than upper limbs. Monitoring progression of motor symptoms is key to plan treatments for prolonging ambulation. METHODS: The progression of gait impairment in a group of ten patients with Duchenne muscular dystrophy was observed longitudinally three times over a period of 2 years by computerized gait analysis system. Spatio-temporal parameters of gait, and variability indicators were extracted from kinematics, while lower limb muscles coactivation were measured at the baseline and at each follow-up evaluation. The 6-min walk test was used to evaluate functional capacity at each time session. FINDINGS: We found a significant increase in stride width and in both stride width and stride length variability at the 1-and 2-year follow-up evaluations. Furthermore, significant higher values in proximal muscle coactivation and significant lower values in both distal muscle coactivation and functional capacity were found at the 2-year follow-up evaluation. Significant negative correlations between muscle coactivation at proximal level and functional capacity and between muscle coactivation at distal level and gait variability were observed. INTERPRETATION: Our findings suggest that patients with Duchenne muscular dystrophy exhibit decline in functional capacity after 2 years from the baseline. Moreover, to cope with disease progression, patients try to maintain an effective gait by changing the balance dynamic strategies (i.e. increase in proximal muscle coactivation) during the course of disease.


Assuntos
Progressão da Doença , Marcha/fisiologia , Músculos/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Fenômenos Biomecânicos , Criança , Feminino , Seguimentos , Análise da Marcha , Humanos , Masculino
18.
Front Public Health ; 8: 187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582605

RESUMO

Smartphone texting while walking is a very common activity among people of different ages, with the so-called "digital natives" being the category most used to interacting with an electronic device during daily activities, mostly for texting purposes. Previous studies have shown how the concurrency of a smartphone-related task and walking can result in a worsening of stability and an increased risk of injuries for adults; an investigation of whether this effect can be identified also in people of a younger age can improve our understanding of the risks associated with this common activity. In this study, we recruited 29 young adolescents (12 ± 1 years) to test whether walking with a smartphone increases fall and injuries risk, and to quantify this effect. To do so, participants were asked to walk along a walkway, with and without the concurrent writing task on a smartphone; several different parameters linked to stability and risk of fall measures were then calculated from an inertial measurement unit and compared between conditions. Smartphone use determined a reduction of spatio-temporal parameters, including step length (from 0.64 ± 0.08 to 0.55 ± 0.06 m) and gait speed (1.23 ± 0.16 to 0.90 ± 0.16 m/s), and a general worsening of selected indicators of gait stability. This was found to be mostly independent from experience or frequency of use, suggesting that the presence of smartphone activities while walking may determine an increased risk of injury or falls also for a population that grew up being used to this concurrency.


Assuntos
Marcha , Smartphone , Adolescente , Adulto , Humanos , Instituições Acadêmicas , Caminhada , Velocidade de Caminhada
19.
Gait Posture ; 80: 280-284, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32563728

RESUMO

BACKGROUND: Subjects with transfemoral amputation (TFA) show an asymmetric gait pattern associated with a decreased ability to recover mechanical energy and an increased metabolic cost of walking. RESEARCH QUESTION: This study aimed to identify the spatio-temporal and kinematic gait variables correlated with mechanical energy values in subjects with TFA and to observe the ability of the identified parameters to discriminate between TFA and controls according to the type of prosthesis. METHODS: The gait of 40 subjects with TFA was evaluated with a motion 3-D optoelectronic system. Nine subjects wore a mechanical prosthesis (TFAm), seventeen a C-Leg prosthesis (TFAc), and fourteen a Genium prosthesis (TFAg). Spatio-temporal and pelvic kinematic parameters were measured. Energy recovery was measured relative to the whole-body center of mass (CoM) kinematics as the fraction of mechanical energy recovered during each walking step (R-step). Correlation tests and multiple linear regression analyses were used to evaluate the correlation and association between kinematic and energy variables, respectively. Receiver operating characteristics curves were plotted to assess the ability of the correlated parameter to distinguish subjects with TFA from controls, and optimal cutoff point values were calculated according to the type of prosthesis. RESULTS: Among the spatio-temporal and kinematic parameters correlated to R-step, only pelvic obliquity of the prosthetic side was significantly associated with R-step. It showed an excellent ability to discriminate between TFA and controls. Furthermore, pelvic obliquity showed an excellent discriminative ability in identifying TFAm and TFAc and a good discriminative ability in identifying TFAg from controls. SIGNIFICANCE: Pelvic obliquity plays an important role in energy recovery during gait for subjects using prosthetics. This information might be exploited to monitor the adaptation of subjects with TFA to prosthetic devices, to lower the energetic cost of walking potentially, and to reduce the long-term risks of secondary physical complications in prosthetic users.


Assuntos
Amputação Cirúrgica/efeitos adversos , Amputação Cirúrgica/reabilitação , Membros Artificiais , Fêmur/cirurgia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Pelve/patologia , Adaptação Fisiológica , Adulto , Idoso , Fenômenos Biomecânicos , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Caminhada
20.
Sensors (Basel) ; 20(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365715

RESUMO

The aim of this study was to analyze the effect of the level of amputation and various prosthetic devices on the muscle activation of the sound limb in people with unilateral transfemoral and transtibial amputation. We calculated the global coactivation of 12 muscles using the time-varying multimuscle coactivation function method in 37 subjects with unilateral transfemoral amputation (10, 16, and 11 with mechanical, electronic, and bionic prostheses, respectively), 11 subjects with transtibial amputation, and 22 healthy subjects representing the control group. The results highlighted that people with amputation had a global coactivation temporal profile similar to that of healthy subjects. However, amputation increased the level of the simultaneous activation of many muscles during the loading response and push-off phases of the gait cycle and decreased it in the midstance and swing subphases. This increased coactivation probably plays a role in prosthetic gait asymmetry and energy consumption. Furthermore, people with amputation and wearing electronic prosthesis showed lower global coactivation when compared with people wearing mechanical and bionic prostheses. These findings suggest that the global lower limb coactivation behavior can be a useful tool to analyze the motor control strategies adopted and the ability to adapt to the prosthetic device.


Assuntos
Amputados , Membros Artificiais , Marcha/fisiologia , Músculos/fisiologia , Adulto , Amputação Cirúrgica , Fenômenos Biomecânicos , Feminino , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Sistema Musculoesquelético , Caminhada , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...