Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biol Res ; 45(3): 289-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23283438

RESUMO

Currently, one of the main threats to public health is diabetes mellitus. Its most detrimental complication is diabetic nephropathy (DN), a clinical syndrome associated with kidney damage and an increased risk of cardiovascular disease. Irrespective of the type of diabetes, DN follows a well-known temporal course. The earliest detectable signs are microalbuminuria and histopathological changes including extracellular matrix deposition, glomerular basement membrane thickening, glomerular and mesangial expansion. Later on macroalbuminuria appears, followed by a progressive decline in glomerular filtration rate and the loss of glomerular podocytes, tubulointerstitial fibrosis, glomerulosclerosis and arteriolar hyalinosis. Tight glycemic and hypertension controls remain the key factors for preventing or arresting the progression of DN. Nevertheless, despite considerable educational effort to control the disease, a significant number of patients not only develop DN, but also progress to chronic kidney disease. Therefore, the availability of a strategy aimed to prevent, delay or revert DN would be highly desirable. In this article, we review the pathophysiological features of DN and the therapeutic mechanisms of multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs). The perfect match between them, together with encouraging pre-clinical data available, allow us to support the notion that MSC transplantation is a promising therapeutic strategy to manage DN onset and progression, not only because of the safety of this procedure, but mainly because of the renoprotective potential of MSCs.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Diferenciação Celular , Células Cultivadas , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Progressão da Doença , Humanos
2.
Biol. Res ; 45(3): 289-296, 2012. ilus
Artigo em Inglês | LILACS | ID: lil-659286

RESUMO

Currently, one of the main threats to public health is diabetes mellitus. Its most detrimental complication is diabetic nephropathy (DN), a clinical syndrome associated with kidney damage and an increased risk of cardiovascular disease. Irrespective of the type of diabetes, DN follows a well-known temporal course. The earliest detectable signs are microalbuminuria and histopathological changes including extracellular matrix deposition, glomerular basement membrane thickening, glomerular and mesangial expansion. Later on macroalbuminuria appears, followed by a progressive decline in glomerular filtration rate and the loss of glomerular podocytes, tubulointerstitial fibrosis, glomerulosclerosis and arteriolar hyalinosis. Tight glycemic and hypertension controls remain the key factors for preventing or arresting the progression of DN. Nevertheless, despite considerable educational effort to control the disease, a significant number of patients not only develop DN, but also progress to chronic kidney disease. Therefore, the availability of a strategy aimed to prevent, delay or revert DN would be highly desirable. In this article, we review the pathophysiological features of DN and the therapeutic mechanisms of multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs). The perfect match between them, together with encouraging pre-clinical data available, allow us to support the notion that MSC transplantation is a promising therapeutic strategy to manage DN onset and progression, not only because of the safety of this procedure, but mainly because of the renoprotective potential of MSCs.


Assuntos
Animais , Humanos , Nefropatias Diabéticas/prevenção & controle , Transplante de Células-Tronco Mesenquimais/métodos , Diferenciação Celular , Células Cultivadas , Progressão da Doença , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia
3.
Stem Cells Dev ; 19(12): 1885-93, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20380515

RESUMO

The transplantation of mesenchymal stem cells (MSCs) proves to be useful to treat pathologies in which tissue damage is linked to oxidative stress (OS). The aim of our work was to evaluate whether primary human MSCs (hMSCs) can manage OS. For this, in vitro we assessed the following parameters: (1) cell viability of hMSCs exposed to increasing concentrations of reactive oxygen species (ROS; source: hydrogen peroxide), reactive nitrogen species (RNS; source: S-nitroso-N-acetylpenicillamine), or both (ROS and RNS; source: 3-morpholinosydnonimine hydrochloride); (2) intracellular level of reactive species in hMSCs exposed to ROS and RNS; (3) basal gene expression and activity of superoxide dismutases, catalase, and glutathione peroxidase of hMSCs; (4) basal level of total glutathione (GSx) of hMSCs; and (5) cell viability of GSx-depleted hMSCs exposed to ROS and/or RNS. Results showed that hMSCs have a high resistance to OS-induced death, which correlates with low levels of intracellular reactive species, constitutive expression of enzymes required to manage OS, and high levels of GSx. When hMSCs were depleted of GSx they lose their capacity to manage OS. Thus, in vitro hMSCs were able to scavenge ROS and RNS and efficiently manage OS. If this potential is maintained in vivo, hMSCs could also contribute to tissue regeneration, limiting OS-induced tissue damage.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Catalase/genética , Catalase/metabolismo , Linhagem Celular , Sobrevivência Celular , Fibroblastos , Expressão Gênica , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Células Secretoras de Insulina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
4.
Biol Blood Marrow Transplant ; 14(6): 631-40, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18489988

RESUMO

Multipotent mesenchymal stromal cells (MSCs), often labeled mesenchymal stem cells, contribute to tissue regeneration in injured bone and cartilage, as well as in the infarcted heart, brain, and kidney. We hypothesize that MSCs might also contribute to pancreas and kidney regeneration in diabetic individuals. Therefore, in streptozotocin (STZ)-induced type 1 diabetes C57BL/6 mice, we tested whether a single intravenous dose of MSCs led to recovery of pancreatic and renal function and structure. When hyperglycemia, glycosuria, massive beta-pancreatic islets destruction, and mild albuminuria were evident (but still without renal histopathologic changes), mice were randomly separated in 2 groups: 1 received 0.5 x 10(6) MSCs that have been ex vivo expanded (and characterized according to their mesenchymal differentiation potential), and the other group received the vehicle. Within a week, only MSC-treated diabetic mice exhibited significant reduction in their blood glucose levels, reaching nearly euglycemic values a month later. Reversion of hyperglycemia and glycosuria remained for 2 months at least. An increase in morphologically normal beta-pancreatic islets was observed only in MSC-treated diabetic mice. Furthermore, in those animals albuminuria was reduced and glomeruli were histologically normal. On the other side, untreated diabetic mice presented glomerular hyalinosis and mesangial expansion. Thus, MSC administration resulted in beta-pancreatic islets regeneration and prevented renal damage in diabetic animals. Our preclinical results suggest bone marrow-derived MSC transplantation as a cell therapy strategy to treat type 1 diabetes and prevent diabetic nephropathy, its main complication.


Assuntos
Diabetes Mellitus Tipo 1/cirurgia , Nefropatias Diabéticas/prevenção & controle , Hiperglicemia/prevenção & controle , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Multipotentes/transplante , Adipócitos/citologia , Albuminúria/etiologia , Albuminúria/prevenção & controle , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/patologia , Nefropatias Diabéticas/patologia , Mesângio Glomerular/patologia , Hiperglicemia/etiologia , Infusões Intravenosas , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiologia , Glomérulos Renais/patologia , Glomérulos Renais/fisiologia , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Osteócitos/citologia , Distribuição Aleatória , Regeneração , Células Estromais/transplante
5.
Transplantation ; 78(4): 503-8, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15446307

RESUMO

BACKGROUND: The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. METHODS: In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. RESULTS: As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. CONCLUSIONS: These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.


Assuntos
Células da Medula Óssea/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Transplante Heterólogo , Animais , DNA/análise , Feminino , Humanos , Hibridização In Situ , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase , Baço/citologia
6.
Growth Factors ; 21(2): 87-94, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14626356

RESUMO

Uncommitted mesenchymal stem cells (MSC), upon commitment and differentiation give rise to several mature mesenchymal lineages. Although the involvement of specific growth factors, including FGF2, in the development of committed MSC is known, the effect of FGF2 on uncommitted progenitors remains unclear. We have analyzed on a comparative basis, the subcellular distribution and mitogenic effect of FGF2 in committed and uncommitted MSC prepared from human bone marrow. Indirect immunofluorescence studies showed strong nuclear FGF2 staining in both progenitors; however, cytoplasmic staining was only detected in committed cells. Western blot analysis revealed the presence of 22.5 and 21-22 kDa forms of FGF2 in the nucleus of both progenitors; however, their relative content was higher in uncommitted than in committed cells. Exogenous FGF2 stimulated proliferation and sustained quiescence in committed and uncommitted cells, respectively. These results show that both type of progenitors, apart from morphological and proliferative differences, display specific patterns of response to FGF2.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea , Técnicas de Cultura de Células , Ciclo Celular , Diferenciação Celular , Divisão Celular/efeitos dos fármacos , Linhagem da Célula , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Isoformas de Proteínas , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fase de Repouso do Ciclo Celular
7.
Cell Transplant ; 12(6): 555-61, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14579923

RESUMO

Bone marrow is the residence site of mesenchymal stem cells (MSC), which upon commitment and maturation develop into several mesenchymal phenotypes. Recently, we have described the presence of MSC in human cord blood (cbMSC) and informed that their properties are the same as those for MSC obtained from adult bone marrow. In this study we have investigated the capability of transplanted cbMSC to home and survive in the marrow of unconditioned nude mice. cbMSC utilized for transplantation studies were characterized by morphology, differentiation potential, and immunophenotype. After transplantation by systemic infusion, human DNA (as detected by PCR amplification of human-specific beta-globin gene) was detected in the marrow of recipients as well as in ex vivo-expanded stromal cells prepared from the marrow of transplanted animals. These results demonstrate homing and survival of cbMSC into the recipient marrow and also suggest a mesenchymal-orientated fate of engrafted cells, because human DNA was also detected in cells of other recipient tissues, like cardiac muscle, teeth, and spleen.


Assuntos
Medula Óssea/cirurgia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Sangue Fetal/citologia , Sobrevivência de Enxerto/imunologia , Síndromes de Imunodeficiência/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Medula Óssea/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Tamanho Celular/imunologia , Quimiotaxia/imunologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/tendências , DNA/metabolismo , Modelos Animais de Doenças , Feminino , Globinas/genética , Humanos , Síndromes de Imunodeficiência/imunologia , Imunofenotipagem , Recém-Nascido , Transplante de Células-Tronco Mesenquimais/tendências , Camundongos , Camundongos Nus , Células Estromais/citologia , Células Estromais/imunologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...