Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-063859

RESUMO

COVID-19 has recently caused a global health crisis and an effective interventional therapy is urgently needed. SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is a promising but challenging drug target due to its intrinsic proofreading exoribonuclease (ExoN). Remdesivir targeting SARS-CoV-2 RdRp exerts high drug efficacy in vitro and in vivo. However, its underlying inhibitory mechanisms remain elusive. Here, we performed all-atom molecular dynamics simulations with an accumulated simulation time of 24 microseconds to elucidate the molecular mechanisms underlying the inhibitory effects of Remdesivir. We found that Remdesivirs 1-cyano group of possesses the dual role of inhibiting nucleotide addition and proofreading. The presence of its polar 1-cyano group at an upstream site in RdRp causes instability and hampers RdRp translocation. This leads to a delayed chain termination of RNA extension, which may also subsequently reduce the likelihood for Remdesivir to be cleaved by ExoN acting on the 3-terminal nucleotide. In addition, our simulations suggest that Remdesivirs 1-cyano group can also disrupt the cleavage active site of ExoN via steric interactions, leading to a further reduced cleavage efficiency. Our work provides plausible molecular mechanisms on how Remdesivir inhibits viral RNA replication and may guide rational design for new treatments of COVID-19 targeting viral replication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA