Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 401(2): 465-73, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17002601

RESUMO

Recent reports have indicated that 48-72 h of fasting, Type 1 diabetes and high-protein feeding induce gluconeogenesis in the small intestine of adult rats in vivo. Since this would (i) represent a dramatic revision of the prevailing view that only the liver and the kidneys are gluconeogenic and (ii) have major consequences in the metabolism, nutrition and diabetes fields, we have thoroughly re-examined this question in the situation reported to induce the highest rate of gluconeogenesis. For this, metabolically viable small intestinal segments from 72 h-fasted adult rats were incubated with [3-13C]glutamine as substrate. After incubation, substrate utilization and product accumulation were measured by enzymatic and NMR spectroscopic methods. Although the segments utilized [13C]glutamine at high rates and accumulated 13C-labelled products linearly for 30 min in vitro, no substantial glucose synthesis could be detected. This was not due to the re-utilization of [13C]glucose initially synthesized from [13C]glutamine. Arteriovenous metabolite concentration difference measurements across the portal vein-drained viscera of 72 h-fasted Wistar and Sprague-Dawley rats clearly indicated that glutamine, the main if not the only gluconeogenic precursor taken up, could not give rise to detectable glucose production in vivo. Therefore we challenge the view that the small intestine of the adult rat is a gluconeogenic organ.


Assuntos
Jejum/metabolismo , Gluconeogênese/fisiologia , Glutamina/metabolismo , Intestino Delgado/metabolismo , Alanina/sangue , Animais , Glicemia/metabolismo , Glucosamina/farmacologia , Glucose/metabolismo , Ácido Glutâmico/sangue , Glutamina/sangue , Hexoquinase/antagonistas & inibidores , Técnicas In Vitro , Intestino Delgado/citologia , Masculino , Ressonância Magnética Nuclear Biomolecular , Veia Porta , Ratos , Ratos Sprague-Dawley , Ratos Wistar
2.
J Neurosci ; 26(17): 4660-71, 2006 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-16641247

RESUMO

Neurotransmitter glutamate has been thought to derive mainly from glutamine via the action of glutaminase type 1 (GLS1). To address the importance of this pathway in glutamatergic transmission, we knocked out GLS1 in mice. The insertion of a STOP cassette by homologous recombination produced a null allele that blocked transcription, encoded no immunoreactive protein, and abolished GLS1 enzymatic activity. Null mutants were slightly smaller, were deficient in goal-directed behavior, hypoventilated, and died in the first postnatal day. No gross or microscopic defects were detected in peripheral organs or in the CNS. In cultured neurons from the null mutants, miniature EPSC amplitude and duration were normal; however, the amplitude of evoked EPSCs decayed more rapidly with sustained 10 Hz stimulation, consistent with an observed reduction in depolarization-evoked glutamate release. Because of this activity-dependent impairment in glutamatergic transmission, we surmised that respiratory networks, which require temporal summation of synaptic input, would be particularly affected. We found that the amplitude of inspirations was decreased in vivo, chemosensitivity to CO2 was severely altered, and the frequency of pacemaker activity recorded in the respiratory generator in the pre-Bötzinger complex, a glutamatergic brainstem network that can be isolated in vitro, was increased. Our results show that although alternate pathways to GLS1 glutamate synthesis support baseline glutamatergic transmission, the GLS1 pathway is essential for maintaining the function of active synapses, and thus the mutation is associated with impaired respiratory function, abnormal goal-directed behavior, and neonatal demise.


Assuntos
Encéfalo/enzimologia , Ácido Glutâmico/metabolismo , Glutaminase/deficiência , Hipoventilação/fisiopatologia , Rim/enzimologia , Transtornos Mentais/fisiopatologia , Transmissão Sináptica , Animais , Animais Recém-Nascidos , Objetivos , Camundongos , Camundongos Knockout , Vias Neurais/metabolismo , Transtornos Respiratórios , Mecânica Respiratória , Taxa de Sobrevida
3.
J Am Soc Nephrol ; 17(2): 398-405, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16396963

RESUMO

Recent studies indicate that renal gluconeogenesis is substantially stimulated in patients with type 2 diabetes, but the mechanism that is responsible for such stimulation remains unknown. Therefore, this study tested the hypothesis that renal gluconeogenesis is intrinsically elevated in the Zucker diabetic fatty rat, which is considered to be an excellent model of type 2 diabetes. For this, isolated renal proximal tubules from diabetic rats and from their lean nondiabetic littermates were incubated in the presence of physiologic gluconeogenic precursors. Although there was no increase in substrate removal and despite a reduced cellular ATP level, a marked stimulation of gluconeogenesis was observed in diabetic relative to nondiabetic rats, with near-physiologic concentrations of lactate (38%), glutamine (51%) and glycerol (66%). This stimulation was caused by a change in the fate of the substrate carbon skeletons resulting from an increase in the activities and mRNA levels of the key gluconeogenic enzymes that are common to lactate, glutamine, and glycerol metabolism, i.e., mainly of phosphoenolpyruvate carboxykinase and, to a lesser extent, of glucose-6-phosphatase and fructose-1,6-bisphosphatase. Experimental evidence suggests that glucocorticoids and cAMP were two factors that were responsible for the long-term stimulation of renal gluconeogenesis observed in the diabetic rats. These data provide the first demonstration in an animal model that renal gluconeogenesis is upregulated by a long-term mechanism during type 2 diabetes. Together with the increased renal mass (38%) observed, they lend support to the view so far based only on in vivo studies performed in humans that renal gluconeogenesis may be stimulated by and crucially contribute to the hyperglycemia of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Gluconeogênese/fisiologia , Túbulos Renais Proximais/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Glutamina , Glicerol , Ácido Láctico , Masculino , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Zucker , Técnicas de Cultura de Tecidos
4.
Arch Toxicol ; 79(10): 587-94, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15991025

RESUMO

Cephaloridine, which accumulates in the renal proximal tubule, is a model compound used for studying the toxicity of antibiotics towards this nephron segment. Several studies have demonstrated that cephaloridine alters renal intermediary and energy metabolism, but the mechanism by which this compound interferes with renal metabolic pathways remains incompletely understood. In an attempt to improve our knowledge in this field, we have studied the influence of cephaloridine on the synthesis of glutamine, which represents a key metabolic process involving several important enzymatic steps in the rabbit kidney. For this, suspensions of rabbit renal proximal tubules were incubated for 90 and 180 min in the presence of 5 mM alanine, an important glutamine precursor, both in the absence and the presence of 10 mM cephaloridine. Glutamate accumulation and glutamine synthesis were found to be inhibited by cephaloridine after 90 and 180 min of incubation, and cephaloridine accumulation in the renal proximal cells occurred in a time-dependent manner. The renal proximal tubule activities of alanine aminotransferase and glutamate dehydrogenase, which initiates alanine removal and releases the ammonia needed for glutamine synthesis, respectively, were inhibited to a significant degree and in a concentration-dependent manner by cephaloridine concentrations in the range found to accumulate in the renal proximal cells. Citrate synthase and glutamine synthetase activities were also inhibited by cephaloridine, but to a much lesser extent. The above enzymatic activities were not found to be inhibited when they were measured after successive dilutions of renal proximal tubules incubated for 180 min in the presence of 5 mM alanine and 10 mM cephaloridine. When microdissected segments (S1-S3) of rabbit renal proximal tubules were incubated for 180 min with 5 mM alanine with and without 5 and 10 mM cephaloridine, glutamate accumulation and glutamine synthesis were also inhibited in the three renal proximal segments studied; the latter cephaloridine-induced inhibitions observed were concentration-dependent except for glutamine in the S3 segment. These results are consistent with the view that cephaloridine accumulates and is toxic along the entire rabbit renal proximal tubule. They also demonstrate that cephaloridine interferes in a concentration-dependent and reversible manner mainly with alanine aminotransferase and glutamate dehydrogenase, which are therefore newly-identified targets of the toxic effects of cephaloridine in the rabbit renal proximal tubule.


Assuntos
Alanina/metabolismo , Antibacterianos/toxicidade , Cefaloridina/toxicidade , Glutamina/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Alanina Transaminase/antagonistas & inibidores , Alanina Transaminase/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/metabolismo , Glutamato-Amônia Ligase/antagonistas & inibidores , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Túbulos Renais Proximais/enzimologia , Coelhos , Fatores de Tempo
5.
J Biol Chem ; 278(40): 38159-66, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12871952

RESUMO

As part of a study on the regulation of renal ammoniagenesis in the mouse kidney, we investigated the effect of chronic metabolic acidosis on glutamine synthesis by isolated mouse renal proximal tubules. The results obtained reveal that, in tubules from control mice, glutamine synthesis occurred at high rates from glutamate and proline and, to a lesser extent, from ornithine, alanine, and aspartate. A 48 h, metabolic acidosis caused a marked inhibition of glutamine synthesis from near-physiological concentrations of both alanine and proline that were avidly metabolized by the tubules; metabolic acidosis also greatly stimulated glutamine utilization and metabolism. These effects were accompanied by a large increase (i) in alanine, proline, and glutamine gluconeogenesis and (ii) in ammonia accumulation from proline and glutamine. In the renal cortex of acidotic mice, the activity of phosphoenolpyruvate carboxykinase increased 4-fold, but that of glutamate dehydrogenase did not change; in contrast with what is known in the rat renal cortex, metabolic acidosis markedly diminished the glutamine synthetase activity and protein level, but not the glutamine synthetase mRNA level in the mouse renal cortex. These results strongly suggest that, in the mouse kidney, glutamine synthetase is an important regulatory component of the availability of the ammonium ions to be excreted for defending systemic acid-base balance. Furthermore, they show that, in rodents, the regulation of renal glutamine synthetase is species-specific.


Assuntos
Glutamato-Amônia Ligase/antagonistas & inibidores , Rim/enzimologia , Acidose/metabolismo , Actinas/metabolismo , Alanina/química , Amônia/metabolismo , Animais , Carbono/química , Feminino , Gluconeogênese , Glutamato Desidrogenase/biossíntese , Ácido Glutâmico/química , Glutamina/química , Córtex Renal/enzimologia , Túbulos Renais/metabolismo , Camundongos , Modelos Biológicos , Nitrogênio/química , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Prolina/química , Prolina/metabolismo , Compostos de Amônio Quaternário/química , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Fatores de Tempo
6.
Biochem J ; 368(Pt 1): 301-8, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12164789

RESUMO

It has been shown recently that glutamine is taken up by the mouse kidney in vivo. However, knowledge about the fate of this amino acid and the regulation of its metabolism in the mouse kidney remains poor. Given the physiological and pathophysiological importance of renal glutamine metabolism and the increasing use of genetically modified mice in biological research, we have conducted a study to characterize glutamine metabolism in the mouse kidney. Proximal tubules isolated from fed and 48 h-starved mice and then incubated with a physiological concentration of glutamine, removed this amino acid and produced ammonium ions at similar rates. In agreement with this observation, activities of the ammoniagenic enzymes, glutaminase and glutamate dehydrogenase, were not different in the renal cortex of fed and starved mice, but the glutamate dehydrogenase mRNA level was elevated 4.5-fold in the renal cortex from starved mice. In contrast, glucose production from glutamine was greatly stimulated whereas the glutamine carbon removed, that was presumably completely oxidized in tubules from fed mice, was virtually suppressed in tubules from starved animals. In accordance with the starvation-induced stimulation of glutamine gluconeogenesis, the activities and mRNA levels of glucose-6-phosphatase, and especially of phosphoenolpyruvate carboxykinase, but not of fructose-1,6-bisphosphatase, were increased in the renal cortex of starved mice. On the basis of our in vitro results, the elevated urinary excretion of ammonium ions observed in starved mice probably reflected an increased transport of these ions into the urine at the expense of those released into the renal veins rather than a stimulation of renal ammoniagenesis.


Assuntos
Glutamina/metabolismo , Túbulos Renais/metabolismo , Nitrogênio/metabolismo , Inanição/metabolismo , Adaptação Biológica , Animais , Feminino , Camundongos , Fatores de Tempo
7.
J Biol Chem ; 277(33): 29444-54, 2002 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-12019262

RESUMO

Although acetate, the main circulating volatile fatty acid in humans and animals, is metabolized at high rates by the renal tissue, little is known about the precise fate of its carbons and about the regulation of its renal metabolism. Therefore, we studied the metabolism of variously labeled [(13)C]acetate and [(14)C]acetate molecules and its regulation by alanine, which is also readily metabolized by the kidney, in isolated rabbit renal proximal tubules. With acetate as the sole substrate, 72% of the C-1 and 49% of the C-2 of acetate were released as CO(2); with acetate plus alanine, the corresponding values were decreased to 49 and 25%. The only other important products formed from the acetate carbons were glutamine, and to a smaller extent, glutamate. By combining (13)C NMR and radioactive and enzymatic measurements with a novel model of acetate metabolism, fluxes through the enzymes involved were calculated. Thanks to its anaplerotic effect, alanine caused a stimulation of acetate removal and a large increase in fluxes through pyruvate carboxylase, citrate synthase, and the enzymes involved in glutamate and glutamine synthesis but not in flux through alpha-ketoglutarate dehydrogenase. We conclude that the anaplerotic substrate alanine not only accelerates the disposal of acetate but also prevents the wasting of the latter compound as CO(2).


Assuntos
Acetatos/metabolismo , Alanina/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Túbulos Renais/metabolismo , Animais , Isótopos de Carbono , Ressonância Magnética Nuclear Biomolecular , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA