Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Science ; 383(6690): eadl3962, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547287

RESUMO

Bacillus Calmette-Guérin (BCG) is a routinely used vaccine for protecting children against Mycobacterium tuberculosis that comprises attenuated Mycobacterium bovis. BCG can also be used to protect livestock against M. bovis; however, its effectiveness has not been quantified for this use. We performed a natural transmission experiment to directly estimate the rate of transmission to and from vaccinated and unvaccinated calves over a 1-year exposure period. The results show a higher indirect efficacy of BCG to reduce transmission from vaccinated animals that subsequently become infected [74%; 95% credible interval (CrI): 46 to 98%] compared with direct protection against infection (58%; 95% CrI: 34 to 73%) and an estimated total efficacy of 89% (95% CrI: 74 to 96%). A mechanistic transmission model of bovine tuberculosis (bTB) spread within the Ethiopian dairy sector was developed and showed how the prospects for elimination may be enabled by routine BCG vaccination of cattle.


Assuntos
Vacina BCG , Erradicação de Doenças , Mycobacterium bovis , Tuberculose Bovina , Vacinação , Eficácia de Vacinas , Animais , Bovinos , Vacina BCG/administração & dosagem , Mycobacterium bovis/imunologia , Tuberculose Bovina/prevenção & controle , Tuberculose Bovina/transmissão , Vacinação/métodos , Vacinação/veterinária , Erradicação de Doenças/métodos
2.
BMC Vet Res ; 20(1): 65, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395846

RESUMO

BACKGROUND: Bovine tuberculosis (bTB) is a chronic disease that results from infection with any member of the Mycobacterium tuberculosis complex. Infected animals are typically diagnosed with tuberculin-based intradermal skin tests according to World Organization of Animal Health which are presently in use. However, tuberculin is not suitable for use in BCG-vaccinated animals due to a high rate of false-positive reactions. Peptide-based defined skin test (DST) antigens have been identified using antigens (ESAT-6, CFP-10 and Rv3615c) which are absent from BCG, but their performance in buffaloes remains unknown. To assess the comparative performance of DST with the tuberculin-based single intradermal test (SIT) and the single intradermal comparative cervical test (SICCT), we screened 543 female buffaloes from 49 organized dairy farms in two districts of Haryana state in India. RESULTS: We found that 37 (7%), 4 (1%) and 18 (3%) buffaloes were reactors with the SIT, SICCT and DST tests, respectively. Of the 37 SIT reactors, four were positive with SICCT and 12 were positive with the DST. The results show that none of the animals tested positive with all three tests, and 6 DST positive animals were SIT negative. Together, a total of 43 animals were reactors with SIT, DST, or both, and the two assays showed moderate agreement (Cohen's Kappa 0.41; 95% Confidence Interval (CI): 0.23, 0.59). In contrast, only slight agreement (Cohen's Kappa 0.18; 95% CI: 0.02, 0.34) was observed between SIT and SICCT. Using a Bayesian latent class model, we estimated test specificities of 96.5% (95% CI, 92-99%), 99.7% (95% CI: 98-100%) and 99.0% (95% CI: 97-100%) for SIT, SICCT and DST, respectively, but considerably lower sensitivities of 58% (95% CI: 35-87%), 9% (95% CI: 3-21%), and 34% (95% CI: 18-55%) albeit with broad and overlapping credible intervals. CONCLUSION: Taken together, our investigation suggests that DST has a test specificity comparable with SICCT, and sensitivity intermediate between SIT and SICCT for the identification of buffaloes suspected of tuberculosis. Our study highlights an urgent need for future well-powered trials with detailed necropsy, with immunological and microbiological profiling of reactor and non-reactor animals to better define the underlying factors for the large observed discrepancies in assay performance, particularly between SIT and SICCT.


Assuntos
Bison , Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Feminino , Animais , Bovinos , Tuberculose Bovina/diagnóstico , Búfalos , Tuberculina , Teorema de Bayes , Vacina BCG , Teste Tuberculínico/veterinária , Sensibilidade e Especificidade
3.
Sci Rep ; 14(1): 2600, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297023

RESUMO

Bovine tuberculosis is an infectious disease of global significance that remains endemic in many countries. Mycobacterium bovis infection in cattle is characterized by a cell-mediated immune response (CMI) that precedes humoral responses, however the timing and trajectories of CMI and antibody responses determined by newer generation assays remain undefined. Here we used defined-antigen interferon-gamma release assays (IGRA) and an eleven-antigen multiplex ELISA (Enferplex TB test) alongside traditional tuberculin-based IGRA and IDEXX M. bovis antibody tests to assess immune trajectories following experimental M. bovis infection of cattle. The results show CMI responses developed as early as two-weeks post-infection, with all infected cattle testing positive three weeks post-infection. Interestingly, 6 of 8 infected animals were serologically positive with the Enferplex TB assay as early as 4 weeks post-infection. As expected, application of the tuberculin skin test enhanced subsequent serological reactivity. Infrequent M. bovis faecal shedding was observed but was uncorrelated with observed immune trajectories. Together, the results show that early antibody responses to M. bovis infection are detectable in some individuals and highlight an urgent need to identify biomarkers that better predict infection outcomes, particularly for application in low-and-middle income countries where test-and-slaughter based control methods are largely unfeasible.


Assuntos
Mycobacterium bovis , Tuberculose Bovina , Humanos , Animais , Bovinos , Interferon gama , Tuberculose Bovina/diagnóstico , Teste Tuberculínico/veterinária , Imunidade Celular
4.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37074324

RESUMO

Aggregation of children in schools has been established to be a key driver of transmission of infectious diseases. Mathematical models of transmission used to predict the impact of control measures, such as vaccination and testing, commonly depend on self-reported contact data. However, the link between self-reported social contacts and pathogen transmission has not been well described. To address this, we used Staphylococcus aureus as a model organism to track transmission within two secondary schools in England and test for associations between self-reported social contacts, test positivity and the bacterial strain collected from the same students. Students filled out a social contact survey and their S. aureus colonization status was ascertained through self-administered swabs from which isolates were sequenced. Isolates from the local community were also sequenced to assess the representativeness of school isolates. A low frequency of genome-linked transmission precluded a formal analysis of links between genomic and social networks, suggesting that S. aureus transmission within schools is too rare to make it a viable tool for this purpose. Whilst we found no evidence that schools are an important route of transmission, increased colonization rates found within schools imply that school-age children may be an important source of community transmission.


Assuntos
Ciência do Cidadão , Infecções Estafilocócicas , Criança , Humanos , Staphylococcus aureus/genética , Infecções Estafilocócicas/microbiologia , Instituições Acadêmicas , Inglaterra
5.
PLoS One ; 18(3): e0283357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36947560

RESUMO

Zoonotic tuberculosis in humans is caused by infection with bacteria of the Mycobacterium tuberculosis complex acquired from animals, most commonly cattle. India has the highest burden of human tuberculosis in the world and any zoonotic risk posed by tuberculosis in bovines needs to be managed at the source of infection as a part of efforts to end human tuberculosis. Zoonotic tuberculosis in humans can be severe and is clinically indistinguishable from non-zoonotic tuberculosis. As a consequence, zoonotic tuberculosis remains under-recognised and the significance of its contribution to human tuberculosis is poorly understood. This study aimed to explore any association between bovine density, bovine ownership, and human tuberculosis reporting in India using self-reported tuberculosis data in households and officially reported tuberculosis cases while controlling for common confounders for human tuberculosis. We find an association between human tuberculosis reporting, bovine density and bovine ownership in India. Buffalo density was significantly associated with an increased risk of self-reported tuberculosis in households (odds ratio (OR) = 1.23 (95% credible interval (CI): 1.10-1.39) at household level; incidence rate ratio (IRR) = 1.17 (95% CI: 1.04-1.33) at district level), while cattle density (OR = 0.80, 95% CI: 0.71-0.89; IRR = 0.78, 95% CI: 0.70-0.87) and ownership of bovines in households (OR = 0.94, 95% CI: 0.9-0.99; IRR = 0.67, 95% CI: 0.57-0.79) had a protective association with tuberculosis reporting. It is unclear whether this relates to differences in tuberculosis transmission dynamics, or perhaps an association between bovines and other unexplored confounders for tuberculosis reporting in humans. Our study highlights a need for structured surveillance to estimate the prevalence of tuberculosis in cattle and buffaloes, characterisation of Mycobacterium tuberculosis complex species present in bovines and transmission analyses at the human-animal interface to better assess the burden and risk pathways of zoonotic tuberculosis in India.


Assuntos
Bison , Mycobacterium bovis , Tuberculose Bovina , Tuberculose , Humanos , Bovinos , Animais , Tuberculose Bovina/epidemiologia , Propriedade , Tuberculose/epidemiologia , Tuberculose/veterinária , Búfalos , Índia/epidemiologia
6.
Sci Rep ; 12(1): 20083, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418897

RESUMO

Anthrax is caused by, Bacillus anthracis, a soil-borne bacterium that infects grazing animals. Kenya reported a sharp increase in livestock anthrax cases from 2005, with only 12% of the sub-counties (decentralised administrative units used by Kenyan county governments to facilitate service provision) accounting for almost a third of the livestock cases. Recent studies of the spatial extent of B. anthracis suitability across Kenya have used approaches that cannot capture the underlying spatial and temporal dependencies in the surveillance data. To address these limitations, we apply the first Bayesian approach using R-INLA to analyse a long-term dataset of livestock anthrax case data, collected from 2006 to 2020 in Kenya. We develop a spatial and a spatiotemporal model to investigate the distribution and socio-economic drivers of anthrax occurrence and incidence at the national and sub-county level. The spatial model was robust to geographically based cross validation and had a sensitivity of 75% (95% CI 65-75) against withheld data. Alarmingly, the spatial model predicted high intensity of anthrax across the Northern counties (Turkana, Samburu, and Marsabit) comprising pastoralists who are often economically and politically marginalized, and highly predisposed to a greater risk of anthrax. The spatiotemporal model showed a positive link between livestock anthrax risk and the total human population and the number of exotic dairy cattle, and a negative association with the human population density, livestock producing households, and agricultural land area. Public health programs aimed at reducing human-animal contact, improving access to healthcare, and increasing anthrax awareness, should prioritize these endemic regions.


Assuntos
Antraz , Bacillus anthracis , Animais , Bovinos , Humanos , Antraz/epidemiologia , Antraz/veterinária , Quênia/epidemiologia , Incidência , Teorema de Bayes , Gado
7.
Sci Rep ; 12(1): 12094, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840592

RESUMO

The emergence of a novel pathogen in a susceptible population can cause rapid spread of infection. High prevalence of SARS-CoV-2 infection in white-tailed deer (Odocoileus virginianus) has been reported in multiple locations, likely resulting from several human-to-deer spillover events followed by deer-to-deer transmission. Knowledge of the risk and direction of SARS-CoV-2 transmission between humans and potential reservoir hosts is essential for effective disease control and prioritisation of interventions. Using genomic data, we reconstruct the transmission history of SARS-CoV-2 in humans and deer, estimate the case finding rate and attempt to infer relative rates of transmission between species. We found no evidence of direct or indirect transmission from deer to human. However, with an estimated case finding rate of only 4.2%, spillback to humans cannot be ruled out. The extensive transmission of SARS-CoV-2 within deer populations and the large number of unsampled cases highlights the need for active surveillance at the human-animal interface.


Assuntos
COVID-19 , Cervos , SARS-CoV-2 , Zoonoses Virais , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/veterinária , Cervos/virologia , Monitoramento Ambiental , Humanos , Medição de Risco , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
8.
Prev Vet Med ; 202: 105616, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35339069

RESUMO

Bovine tuberculosis (BTB) is endemic in Ethiopia. Although upgraded dairy cattle account for only 1% of the total cattle population, they are the backbone of the marketed milk production in the country. Supported by research data outputs from three years, we report in this paper an estimate of the productivity loss and cost of BTB to the Ethiopian dairy sector in two dairy settings, the urban production system in Central Ethiopia (model 1) and the national upgraded dairy production (model 2). Primary data sources were used (e.g. market survey; three-year longitudinal productivity survey; abattoir survey) as well as secondary data sources. A matrix population model, composed of a population vector representing the herd composition that is repeatedly multiplied with a projection matrix, was developed to simulate the livestock dairy population. The initial herd structure was simulated over 30 years to obtain an equilibrium herd-structure representing an Eigenvector of the projection matrix. We performed an incremental cost of disease analysis by comparing livestock production with and without BTB during a period of 10 years. We assumed a BTB prevalence of 40%. In year ten, the Net present value (NPV) of livestock production in terms of milk, meat and hides was estimated at 154.5 million USD for model 1 and 1.7 billion USD for model 2. Loss of NPV over 10 years was estimated at 12 million USD for model 1 and 131.7 million USD for model 2, representing roughly 7.3% loss in NPV or 219 USD per animal. This is a benchmark against which a national TB control program could be developed in the future to calculate its benefit/cost ratio.


Assuntos
Doenças dos Bovinos , Tuberculose Bovina , Animais , Bovinos , Indústria de Laticínios , Etiópia/epidemiologia , Gado , Leite , Tuberculose Bovina/epidemiologia
9.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35078920

RESUMO

Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for ∼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive "One Health" approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2.


Assuntos
COVID-19/transmissão , Cervos/virologia , SARS-CoV-2/isolamento & purificação , Zoonoses/virologia , Animais , COVID-19/virologia , Reservatórios de Doenças/virologia , Humanos , SARS-CoV-2/genética
10.
Zoonoses Public Health ; 69(6): 663-672, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379451

RESUMO

Bovine tuberculosis (bTB) is a disease with impact on dairy productivity, as well as having the potential for zoonotic transmission. Understanding the genetic diversity of the disease agent Mycobacterium bovis is important for identifying its routes of transmission. Here we investigated the level of genetic diversity of M. bovis isolates and assessed the zoonotic potential in risk groups of people working in bTB-infected dairy farms in central Ethiopia. M. bovis was isolated and spoligotyped from tissue lesions collected from slaughtered cattle as well as from raw milk collected from bTB positive cows in dairy farms from six urban areas of central Ethiopia. From consented dairy farm workers, knowledge and practices related to zoonotic TB transmission, together with demographic and clinical information, was collected through interviews. Sputum or Fine Needle Aspirate (FNA) samples were collected from suspected TB cases. Spoligotyping of 55 M. bovis isolates that originated either from cattle tissues with tuberculous lesion or from raw milk revealed seven spoligotype patterns where SB1176 was the most prevalent type (47.3%). Most isolates (89.1%) were of the M. bovis African 2 clonal complex. All sputum and FNA samples from 41 dairy farm workers with symptoms of TB were culture negative for any mycobacteria. Among the 41 TB suspected farm workers, 61% did not know about bTB in cattle and its zoonotic potential, and over two-third of these workers practiced raw milk consumption. Our spoligotype analysis suggests a wider transmission of a single spoligotype in the study area. The results reported here may be useful in guiding future work to identify the source and direction of bTB transmission and hence design of a control strategy. Isolation of M. bovis from milk, knowledge gap on zoonotic TB and practice of consumption of raw milk in the study population showed potential risk for zoonotic transmission.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Tuberculose , Feminino , Bovinos , Animais , Mycobacterium bovis/genética , Tuberculose Bovina/epidemiologia , Fazendas , Etiópia/epidemiologia , Tuberculose/epidemiologia , Tuberculose/veterinária
11.
PLoS Pathog ; 17(11): e1010075, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843579

RESUMO

Mycobacterium bovis (M. bovis) is a causative agent of bovine tuberculosis, a significant source of morbidity and mortality in the global cattle industry. The Randomised Badger Culling Trial was a field experiment carried out between 1998 and 2005 in the South West of England. As part of this trial, M. bovis isolates were collected from contemporaneous and overlapping populations of badgers and cattle within ten defined trial areas. We combined whole genome sequences from 1,442 isolates with location and cattle movement data, identifying transmission clusters and inferred rates and routes of transmission of M. bovis. Most trial areas contained a single transmission cluster that had been established shortly before sampling, often contemporaneous with the expansion of bovine tuberculosis in the 1980s. The estimated rate of transmission from badger to cattle was approximately two times higher than from cattle to badger, and the rate of within-species transmission considerably exceeded these for both species. We identified long distance transmission events linked to cattle movement, recurrence of herd breakdown by infection within the same transmission clusters and superspreader events driven by cattle but not badgers. Overall, our data suggests that the transmission clusters in different parts of South West England that are still evident today were established by long-distance seeding events involving cattle movement, not by recrudescence from a long-established wildlife reservoir. Clusters are maintained primarily by within-species transmission, with less frequent spill-over both from badger to cattle and cattle to badger.


Assuntos
Reservatórios de Doenças/microbiologia , Mustelidae/microbiologia , Mycobacterium bovis/isolamento & purificação , Tuberculose Bovina/transmissão , Animais , Bovinos , Ensaios Clínicos Veterinários como Assunto , Inglaterra/epidemiologia , Distribuição Aleatória , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/microbiologia
13.
Front Vet Sci ; 8: 698768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368283

RESUMO

Bovine tuberculosis (BTB) has substantial impact on fertility, milk, and meat productivity in cattle. However, these assumptions are based on outdated data. Recent global studies on the impact of BTB on cattle productivity are scarce and show sometimes inconclusive and/or contradicting results. This pilot study is the first longitudinal study performed in urban upgraded dairy cattle in Ethiopia that are kept under intensive husbandry. We assessed whether BTB has an impact on various animal productivity parameters and animal movement. Animals (N = 890) included in the study were tested for BTB at least once using the comparative intradermal tuberculin test (CIDT). Fertility, mortality, and offtake were assessed in 21 dairy farms where herd follow-ups over 3 years were performed. In addition, an independent abattoir survey was conducted to assess carcass weight and visible TB-like lesions upon meat inspection. Animal movements (purchasing and offtakes) were documented for each farm. The impact of BTB status on the intervals been birth, service, and calving times and the intercalving intervals was analyzed using a Cox proportional hazards model. The hazard ratio associated with BTB-positive animals was smaller than 1 for all fertility parameters, suggesting that BTB status increases the time between events; however, the effect was small and only statistically significant (95% level) for the time between calving and service. Offtakes included a higher percentage of reactor animals (58%) as compared with non-reactor animals (42%) (p = 0.0001). Overall, reactors were eliminated from the farms within 238.6 days after receiving test results, which was 54.9 days faster than for negative animals. The majority of owners purchased animals within their town or its surrounding. Nearly a quarter of reactors were sold directly to other farms. Animals were also sold further away, including other regions, raising the question of disease spread and the need for an animal tracing mechanism. In the abattoir survey, a total of 349 carcasses were weighed, of which 8% showed visible TB-like lesions and 53.6% had fasciolosis. Negative adult bull carcasses were 7.5 kg heavier than reactor bulls.

14.
Front Vet Sci ; 8: 702402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368285

RESUMO

Bovine tuberculosis (bTB) is prevalent in intensive dairy farms in Ethiopia. Vaccination could be an alternative control approach given the socio-economic challenges of a test-and-slaughter control strategy. The efficacy of the BCG was evaluated on 40 Holstein-Friesian (HF) and zebu crossbred calves recruited from single intradermal cervical comparative tuberculin (SICCT) test negative herds and randomly allocated into two groups. Twenty-two calves were vaccinated within 2 weeks of age, and 18 were kept as a control. Six weeks post-vaccination, the two groups were exposed and kept mixed with known SICCT test positive cows for 1 year. Immune responses were monitored by interferon gamma (IFN-γ) release assay (IGRA), SICCT test, and antibody assay. Vaccinated calves developed strong responses to the SICCT test at the sixth week post-vaccination, but did not respond to ESAT-6/CFP-10 peptide antigen-based IGRA. During the exposure, IFN-γ response to the specific peptide cocktail [F (2.44, 92.67) = 26.96; p < 0.001] and skin reaction to the specific proteins cocktail [F (1.7, 64.3); p < 0.001] increased progressively in both groups while their antibody responses were low. The prevalence of bTB was 88.9% (95% CI: 65.3-98.6) and 63.6% (95% CI: 40.7-83.8) in the control and vaccinated calves, respectively, based on Mycobacterium bovis isolation, giving a direct protective efficacy estimate of 28.4% (95% CI: -2.7 to 50.1). The proportion of vaccinated calves with lesion was 7.0% (34/484) against 11.4% (45/396) in control calves, representing a 38% (95% CI: 5.8-59.4) reduction of lesion prevalence. Besides, the severity of pathology was significantly lower (Mann-Whitney U-test, p < 0.05) in vaccinated (median score = 2.0, IQR = 0-4.75) than in control (median score = 5, IQR = 3.0-6.25) calves. Moreover, survival from M. bovis infection in vaccinated calves was significantly (log-rank test: χ2 = 6.749, p < 0.01) higher than that of the control calves. In conclusion, the efficacy of BCG was low, but the reduced frequency and severity of lesion in vaccinated calves could suggest its potential role in containing onward transmission.

15.
PLoS One ; 16(7): e0254091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214106

RESUMO

Bovine tuberculosis (bTB) is an important disease for dairy productivity, as well as having the potential for zoonotic transmission. Previous prevalence studies of bTB in the dairy sector in central Ethiopia have suggested high prevalence, however, they have been limited to relatively small scale surveys, raising concerns about their representativeness. Here we carried out a cross sectional one-stage cluster sampling survey taking the dairy herd as a cluster to estimate the prevalence of bTB in dairy farms in six areas of central Ethiopia. The survey, which to date is by far the largest in the area in terms of the number of dairy farms, study areas and risk factors explored, took place from March 2016 to May 2017. This study combined tuberculin skin testing and the collection of additional herd and animal level data by questionnaire to identify potential risk factors contributing to bTB transmission. We applied the single intradermal cervical comparative tuberculin (SICCT) test using >4mm cut-off for considering an individual animal as positive for bTB; at least one reactor animal was required for a herd to be considered bTB positive. Two hundred ninety-nine dairy herds in the six study areas were randomly selected, from which 5,675 cattle were tested. The overall prevalence of bTB after standardisation for herd-size in the population was 54.4% (95% CI 48.7-60%) at the herd level, and it was 24.5% (95% CI 23.3-25.8) at the individual animal level. A Generalized Linear Mixed Model (GLMM) with herd and area as random effect was used to explore risk factors association with bTB status. We found that herd size, age, bTB history at farm, and breed were significant risk factors for animals to be SICCT positive. Animals from large herds had 8.3 times the odds of being tuberculin reactor (OR: 8.3, p-value:0.008) as compared to animals from small herds. The effect of age was strongest for animals 8-10 years of age (the oldest category) having 8.9 times the odds of being tuberculin reactors (OR: 8.9, p-value:<0.001) compared to the youngest category. The other identified significant risk factors were bTB history at farm (OR: 5.2, p-value:0.003) and cattle breed (OR: 2.5, p-value: 0.032). Our study demonstrates a high prevalence of bTB in central Ethiopia but with a large variation in within-herd prevalence between herds, findings that lays an important foundation for the future development of control strategies.


Assuntos
Indústria de Laticínios , Tuberculose Bovina/epidemiologia , Animais , Bovinos , Etiópia/epidemiologia , Análise Fatorial , Geografia , Análise Multivariada , Prevalência , Fatores de Risco , Tuberculina/metabolismo
16.
Microb Genom ; 7(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33945462

RESUMO

Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis, which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M. bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis, based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.


Assuntos
Mycobacterium bovis/genética , Tuberculose Bovina/microbiologia , Tuberculose Bovina/transmissão , Animais , Técnicas de Tipagem Bacteriana , Bovinos , Etiópia/epidemiologia , Europa (Continente) , Genótipo , Gado , Repetições Minissatélites , Mycobacterium bovis/isolamento & purificação , Análise de Sequência , Tuberculose Bovina/epidemiologia , Sequenciamento Completo do Genoma
17.
Front Vet Sci ; 8: 637580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681334

RESUMO

More than 50 million cattle are likely exposed to bovine tuberculosis (bTB) worldwide, highlighting an urgent need for bTB control strategies in low- and middle-income countries (LMICs) and other regions where the disease remains endemic and test-and-slaughter approaches are unfeasible. While Bacillus Calmette-Guérin (BCG) was first developed as a vaccine for use in cattle even before its widespread use in humans, its efficacy against bTB remains poorly understood. To address this important knowledge gap, we conducted a systematic review and meta-analysis to determine the direct efficacy of BCG against bTB challenge in cattle, and performed scenario analyses with transmission dynamic models incorporating direct and indirect vaccinal effects ("herd-immunity") to assess potential impact on herd level disease control. The analysis shows a relative risk of infection of 0.75 (95% CI: 0.68, 0.82) in 1,902 vaccinates as compared with 1,667 controls, corresponding to a direct vaccine efficacy of 25% (95% CI: 18, 32). Importantly, scenario analyses considering both direct and indirect effects suggest that disease prevalence could be driven down close to Officially TB-Free (OTF) status (<0.1%), if BCG were introduced in the next 10-year time period in low to moderate (<15%) prevalence settings, and that 50-95% of cumulative cases may be averted over the next 50 years even in high (20-40%) disease burden settings with immediate implementation of BCG vaccination. Taken together, the analyses suggest that BCG vaccination may help accelerate control of bTB in endemic settings, particularly with early implementation in the face of dairy intensification in regions that currently lack effective bTB control programs.

18.
Microorganisms ; 9(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672209

RESUMO

We previously developed a transmission dynamic model of Neisseria meningitidis serogroup A (NmA) with the aim of forecasting the relative benefits of different immunisation strategies with MenAfriVac. Our findings suggested that the most effective strategy in maintaining disease control was the introduction of MenAfriVac into the Expanded Programme on Immunisation (EPI). This strategy is currently being followed by the countries of the meningitis belt. Since then, the persistence of vaccine-induced antibodies has been further studied and new data suggest that immune response is influenced by the age at vaccination. Here, we aim to investigate the influence of both the duration and age-specificity of vaccine-induced protection on our model predictions and explore how the optimal vaccination strategy may change in the long-term. We adapted our previous model and considered plausible alternative immunization strategies, including the addition of a booster dose to the current schedule, as well as the routine vaccination of school-aged children for a range of different assumptions regarding the duration of protection. To allow for a comparison between the different strategies, we use several metrics, including the median age of infection, the number of people needed to vaccinate (NNV) to prevent one case, the age distribution of cases for each strategy, as well as the time it takes for the number of cases to start increasing after the honeymoon period (resurgence). None of the strategies explored in this work is superior in all respects. This is especially true when vaccine-induced protection is the same regardless of the age at vaccination. Uncertainty in the duration of protection is important. For duration of protection lasting for an average of 18 years or longer, the model predicts elimination of NmA cases. Assuming that vaccine protection is more durable for individuals vaccinated after the age of 5 years, routine immunization of older children would be more efficient in reducing disease incidence and would also result in a fewer number of doses necessary to prevent one case. Assuming that elimination does not occur, adding a booster dose is likely to prevent most cases but the caveat will be a more costly intervention. These results can be used to understand important sources of uncertainty around MenAfriVac and support decisions by policymakers.

19.
Clin Case Rep ; 9(1): 487-490, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33489201

RESUMO

This report illustrates that calves may be infected with bovine tuberculosis at early age under natural conditions and progression can be rapid. Thus, testing of calves needs to be considered in any control program to reduce the risk of transmission.

20.
Front Vet Sci ; 7: 391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793643

RESUMO

In most low- and middle-income countries (LMICs), bovine tuberculosis (bTB) remains endemic due to the absence of control programs. This is because successful bTB control and eradication programs have relied on test-and-slaughter strategies that are socioeconomically unfeasible in LMICs. While Bacillus Calmette-Guérin (BCG) vaccine-induced protection for cattle has long been documented in experimental and field trials, its use in control programs has been precluded by the inability to differentiate BCG-vaccinated from naturally infected animals using the OIE-prescribed purified protein derivative (PPD)-based tuberculin skin tests. In the current study, the diagnostic specificity and capability for differentiating infected from vaccinated animals (DIVA) of a novel defined antigen skin test (DST) in BCG-vaccinated (Bos taurus ssp. taurus x B. t. ssp. indicus) calves were compared with the performance of traditional PPD-tuberculin in both the skin test and in vitro interferon-gamma release assay (IGRA). The IFN-γ production from whole blood cells stimulated with both PPDs increased significantly from the 0 week baseline levels, while DST induced no measurable IFN-γ production in BCG-vaccinated calves. None of the 15 BCG-vaccinated calves were reactive with the DST skin test (100% specificity; one-tailed lower 95% CI: 82). In contrast, 10 of 15 BCG-vaccinated calves were classified as reactors with the PPD-based single intradermal test (SIT) (specificity in vaccinated animals = 33%; 95% CI: 12, 62). Taken together, the results provide strong evidence that the DST is highly specific and enables DIVA capability in both skin and IGRA assay format, thereby enabling the implementation of BCG vaccine-based bTB control, particularly in settings where test and slaughter remain unfeasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...