RESUMO
The androgen/estrogen balance is essential for normal sexual development and reproduction in mammals. Studies performed herein investigated the potential for estrogen synthesis in cells of the testes of a hystricomorph rodent, Galea spixii The study characterized the expression of the key enzymes responsible for estrogen and androgen synthesis, cytochromes P450 aromatase (P450arom), 17α-hydroxylase/17,20-lyase (P450c17) respectively, as well as the redox partner NADPH cytochrome P450 oxido-reductase (CPR) required to support electron transfer and catalysis of these P450s, by immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR) analysis, throughout postnatal sexual development. Testes (immature, pre-pubertal, pubertal and post-pubertal) were collected, fixed for IHC (CYP19, CYP17 and CPR) and stored frozen for qPCR for the relevant gene transcripts (Cyp19a1 and Cyp17a1). Expression of P450c17 was significantly elevated at the pre-pubertal and pubertal stages. Based on IHC, P450c17 was expressed only in Leydig cell clusters. The expression of P450arom was detectable at all stages of sexual development of Galea spixii IHC data suggest that estrogen synthesis was not restricted to somatic cells (Leydig cells/Sertoli cells), but that germ cells may also be capable of converting androgens into estrogens, important for testicular function and spermatogenesis.
Assuntos
Hormônios Esteroides Gonadais/biossíntese , Roedores/crescimento & desenvolvimento , Roedores/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Androgênios/metabolismo , Animais , Estrogênios/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Esteroide 17-alfa-Hidroxilase/metabolismoRESUMO
REASONS FOR PERFORMING STUDY: Cryptorchidism affects 2-8% of male horses and the affected testis undergoes a disruption of normal spermatogenesis. The underlying molecular changes are poorly understood in the cryptorchid equine testis. OBJECTIVES: Compare the expression of anti-Müllerian hormone (AMH), anti-Müllerian hormone receptor (AMHR2), androgen receptor (AR), cyclin kinase inhibitor (CDKN1B), connexin 43 (Cx43), 3ß hydroxysteroid dehydrogenase/Δ(5) -Δ(4) - isomerase (3ßHSD), P450c17 hydroxylase/lyase (P450c17) and cytochrome P450 aromatase (P450arom) in the undescended testis of cryptorchid stallions with that of normal stallions. METHODS: Undescended, abdominal testes from four cryptorchid stallions between 2 and 3 years of age were collected during routine castrations along with normally descended testes from normal stallions between 2 and 3 years of age (n = 7). Samples were analysed by immunohistochemistry and quantitative real-time PCR. RESULTS: Cryptorchid testes had increased AMH and AMHR2 immunolabelling when compared with normal testes, which indicates failure of maturation of Sertoli cells and/or lack of testosterone suppression. Failure of Sertoli cell maturation in the cryptorchid testis may also be attributed to AR abnormalities and/or a consequence of lack of testosterone suppression due to decreased 3ßHSD. Cyclin-dependent kinase (CDKN1B) was not expressed in Sertoli cells of cryptorchid testes suggesting that Sertoli cells are still proliferating, which is also a characteristic of the immature testis. In addition, Cx43 expression is decreased in the cryptorchid testis, indicating a disruption in intercellular communication. CONCLUSIONS: Undescended testes of cryptorchid horses present characteristics of immaturity suggesting that the failure of Sertoli cell maturation may be a consequence of cryptorchidism. POTENTIAL RELEVANCE: This study provides a better understanding of the effect of cryptorchidism on testicular function in stallions.