Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Can J Kidney Health Dis ; 11: 20543581241242562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623282

RESUMO

Rationale: Alport Syndrome (AS) is a progressive genetic condition characterized by chronic kidney disease (CKD), hearing loss, and eye abnormalities. It is caused by mutations in the genes COL4A3, COL4A4, and COL4A5. Heterozygous mutations in COL4A4 and COL4A3 cause autosomal dominant Alport Syndrome (ADAS), and a spectrum of phenotypes ranging from asymptomatic hematuria to CKD, with variable extra-renal features. In the past, heterozygous mutations in these genes were thought to be benign, however recent studies show that about 30% of patients can progress to CKD, and 15% can progress to end stage kidney disease (ESKD). Presenting Concerns: We present a case of a woman who was noted to have microscopic hematuria pre-living kidney donation. Genetic testing revealed a heterozygous variant of uncertain significance (VUS) in the COL4A4 gene. VUSs are medically nonactionable findings and data show that VUSs can be detected in 41% of all patients who undergo clinical genetic testing. VUSs frustrate clinicians and patients alike. Although they cannot be used in medical decision-making, data suggest that reanalysis can result in the reclassification of a VUS over time. Diagnosis: Post-donation, the index patient had a higher than anticipated rise in serum creatinine, raising a concern for possible intrinsic kidney disease. Kidney biopsy was deemed high risk in the setting of a unilateral kidney thereby limiting possible diagnostic intervention to determine the cause of disease. Intervention: Re-evaluation of prior genetic testing results and reassessment of the previously identified VUS in COL4A4 was performed 5-years post-donation. These analyses, along with the addition of new phenotypic data and extended pedigree data, resulted in the reclassification of the previously identified VUS to a likely pathogenic variant. Outcomes: This case demonstrates the importance of structured, periodic re-evaluation of genetic testing results. With the ever-changing landscape of genetics in medicine, the interpretation of a VUS can be dynamic and therefore warrant caution in living kidney donor evaluations. Studies have shown that about 10% of VUSs can be upgraded to a pathogenic classification after an 18- to 36-month interval. Structured re-evaluation of genomic testing results has not yet been integrated into clinical practice and poses a unique challenge in living kidney donation. Novel findings: This case report highlights the variability of the ADAS phenotype caused by pathogenic heterozygous variants in the type 4 collagen genes. It supports the nomenclature change from a benign hematuria phenotype to ADAS, particularly when additional risk factors such as proteinuria, focal segmental glomerulosclerosis or glomerular basement membrane changes on kidney biopsy are present, or as in this case, evidence of disease in other family members.


Justification: Le syndrome d'Alport (SA) est une maladie génétique progressive caractérisée par une insuffisance rénale chronique (IRC), une perte auditive et des anomalies oculaires. La maladie est causée par des mutations dans les gènes COL4A3, COL4A4 et COL4A5. Des mutations hétérozygotes dans les gènes COL4A4 et COL4A3 provoquent le syndrome d'Alport autosomique dominant (SAAD) et un specter de phénotypes allant de l'hématurie asymptomatique à l'IRC, avec des caractéristiques extrarénales variables. Dans le passé, les mutations hétérozygotes de ces gènes étaient considérées comme bénignes, mais des études récentes montrent qu'environ 30 % des patients peuvent progresser vers l'IRC et 15 % vers l'insuffisance rénale terminale (IRT). Présentation du cas: Nous présentons le cas d'une femme chez qui on avait observé une hématurie microscopique avant un don vivant de rein. Les tests génétiques ont révélé un variant hétérozygote de signification incertaine dans le gène COL4A4. Les variants de signification incertaine (VSI) sont des résultats qui ne peuvent être utilisés médicalement et les données montrent qu'ils peuvent être détectés chez 41 % des patients qui subissent des tests génétiques cliniques. Les VSI sont frustrants tant pour les cliniciens que pour les patients. Bien qu'ils ne puissent pas être utilisés dans la prise de décisions médicales, les données suggèrent que leur réanalyse pourrait entraîner leur reclassification au fil du temps. Diagnostic: Après le don, ce cas index a présenté une élévation de la créatinine sérique plus importante que prévu, ce qui a soulevé une préoccupation quant à la présence d'une néphropathie intrinsèque. La biopsie rénale a été jugée à haut risque dans le contexte de rein unilatéral, ce qui a limité la possible intervention diagnostique pour déterminer la cause de la maladie. Intervention: La réévaluation des résultats des tests génétiques antérieurs et du VSI précédemment identifié dans COL4A4 a été réalisée 5 ans après le don. Ces analyses, ainsi que l'ajout de nouvelles données phénotypiques et de données généalogiques étendues, ont abouti à la reclassification du VSI précédemment identifié en variant probablement pathogène. Résultats: Ce cas illustre l'importance de réévaluer de façon structurée et périodique les résultats des tests génétiques. La génétique étant en constante évolution en médecine, l'interprétation d'un VSI peut être dynamique et, ainsi, justifier la prudence dans les évaluations des donneurs de reins vivants. Des études ont montré qu'environ 10 % des VSI peuvent être reclassés comme pathogènes après 18 à 36 mois. La réévaluation structurée des résultats des tests génomiques, qui n'a pas encore été intégrée dans la pratique clinique, pose un défi unique dans le contexte d'un don vivant de reins. Principales observations: Ce rapport de cas met en évidence la variabilité du phénotype du SAAD causé par des variants hétérozygotes pathogènes dans les gènes du collagène de type 4. Il soutient un changement de nomenclature du phénotype d'hématurie bénigne en SAAD, en particulier en présence de facteurs de risque supplémentaires tels que la protéinurie et la glomérulosclérose segmentaire et focale, de modifications de la membrane basale glomérulaire sur la biopsie rénale ou, comme dans ce cas, de preuves de la maladie chez d'autres membres de la famille.

3.
Obstet Med ; 16(3): 162-169, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720000

RESUMO

Introduction: Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an increasingly recognized cause of chronic kidney disease. ADTKD pregnancy outcomes have not previously been described. Methods: A cross-sectional survey was sent to women from ADTKD families. Results: Information was obtained from 85 afffected women (164 term pregnancies) and 23 controls (50 pregnancies). Only 16.5% of genetically affected women knew they had ADTKD during pregnancy. Eighteen percent of ADTKD mothers had hypertension during pregnancy versus 12% in controls (p = 0.54) and >40% in comparative studies of chronic kidney disease in pregnancy. Eleven percent of births of ADTKD mothers were <37 weeks versus 0 in controls (p < 0.0001). Cesarean section occurred in 19% of pregnancies in affected women versus 38% of unaffected individuals (p = 0.06). Only 12% of babies required a neonatal intensive care unit stay. Conclusions: ADTKD pregnancies had lower rates of hypertension during pregnancy versus other forms of chronic kidney disease, which may have contributed to good maternal and fetal outcomes.

4.
Nephron ; 147(11): 685-692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37499630

RESUMO

INTRODUCTION: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first 3 decades of life. Over 40 genes have been identified as causative for isolated human CAKUT. However, many genes remain unknown, and the prioritization of potential CAKUT candidate genes is challenging. To develop an independent approach to prioritize CAKUT candidate genes, we hypothesized that monogenic CAKUT genes are most likely co-expressed along a temporal axis during kidney development and that genes with coinciding high expression may represent strong novel CAKUT candidate genes. METHODS: We analyzed single-cell mRNA (sc-mRNA) transcriptomics data of human fetal kidney for temporal sc-mRNA co-expression of 40 known CAKUT genes. A maximum of high expression in consecutive timepoints of kidney development was found for four of the 40 genes (EYA1, SIX1, SIX2, and ITGA8) in nephron progenitor cells a, b, c, d (NPCa-d). We concluded that NPCa-d are relevant for CAKUT pathogenesis and intersected two lists of CAKUT candidate genes resulting from unbiased whole-exome sequencing (WES) with the 100 highest expressed genes in NPCa-d. RESULTS: Intersection of the 100 highest expressed genes in NPCa-d with WES-derived CAKUT candidate genes identified an overlap with the candidate genes KIF19, TRIM36, USP35, CHTF18, in each of which a biallelic variant was detected in different families with CAKUT. CONCLUSION: Sc-mRNA expression data of human fetal kidney can be utilized to prioritize WES-derived CAKUT candidate genes. KIF19, TRIM36, USP35, and CHTF18 may represent strong novel candidate genes for CAKUT.


Assuntos
Transcriptoma , Sistema Urinário , Humanos , Rim/anormalidades , Sistema Urinário/anormalidades , RNA Mensageiro , Proteínas de Homeodomínio , Endopeptidases
5.
J Mol Med (Berl) ; 101(8): 1029-1040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37466676

RESUMO

Atypical hemolytic uremic syndrome (aHUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal impairment. Complement and coagulation gene variants have been associated with aHUS susceptibility. We assessed the diagnostic yield of a next-generation sequencing (NGS) panel in a large cohort of Canadian patients with suspected aHUS. Molecular testing was performed on peripheral blood DNA samples from 167 patients, collected between May 2019 and December 2021, using a clinically validated NGS pipeline. Coding exons with 20 base pairs of flanking intronic regions for 21 aHUS-associated or candidate genes were enriched using a custom hybridization protocol. All sequence and copy number variants were assessed and classified following American College of Medical Genetics guidelines. Molecular diagnostic results were reported for four variants in three individuals (1.8%). Twenty-seven variants of unknown significance were identified in 25 (15%) patients, and 34 unique variants in candidate genes were identified in 28 individuals. An illustrative patient case describing two genetic alterations in complement genes is presented, highlighting that variable expressivity and incomplete penetrance must be considered when interpreting genetic data in patients with complement-mediated disease, alongside the potential additive effects of genetic variants on aHUS pathophysiology. In this cohort of patients with suspected aHUS, using clinical pipelines for genetic testing and variant classification, pathogenic/likely pathogenic variants occurred in a very small percentage of patients. Our results highlight the ongoing challenges in variant classification following NGS panel testing in patients with suspected aHUS, alongside the need for clear testing guidance in the clinical setting. KEY MESSAGES: • Clinical molecular testing for disease associated genes in aHUS is challenging. • Challenges include patient selection criteria, test validation, and interpretation. • Most variants were of uncertain significance (31.7% of patients; VUS + candidates). • Their clinical significance may be elucidated as more evidence becomes available.  • Low molecular diagnostic rate (1.8%), perhaps due to strict classification criteria. • Case study identified two likely pathogenic variants; one each in MCP/CD46 and CFI.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Genótipo , Mutação , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Seleção de Pacientes , Síndrome Hemolítico-Urêmica Atípica/diagnóstico , Síndrome Hemolítico-Urêmica Atípica/genética , Estudos de Coortes , Reprodutibilidade dos Testes , Incerteza
6.
Am J Med Genet A ; 191(8): 2083-2091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37213061

RESUMO

Neurogenic bladder is caused by disruption of neuronal pathways regulating bladder relaxation and contraction. In severe cases, neurogenic bladder can lead to vesicoureteral reflux, hydroureter, and chronic kidney disease. These complications overlap with manifestations of congenital anomalies of the kidney and urinary tract (CAKUT). To identify novel monogenic causes of neurogenic bladder, we applied exome sequencing (ES) to our cohort of families with CAKUT. By ES, we have identified a homozygous missense variant (p.Gln184Arg) in CHRM5 (cholinergic receptor, muscarinic, 5) in a patient with neurogenic bladder and secondary complications of CAKUT. CHRM5 codes for a seven transmembrane-spanning G-protein-coupled muscarinic acetylcholine receptor. CHRM5 is shown to be expressed in murine and human bladder walls and is reported to cause bladder overactivity in Chrm5 knockout mice. We investigated CHRM5 as a potential novel candidate gene for neurogenic bladder with secondary complications of CAKUT. CHRM5 is similar to the cholinergic bladder neuron receptor CHRNA3, which Mann et al. published as the first monogenic cause of neurogenic bladder. However, functional in vitro studies did not reveal evidence to strengthen the status as a candidate gene. Discovering additional families with CHRM5 variants could help to further assess the genes' candidate status.


Assuntos
Bexiga Urinaria Neurogênica , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Humanos , Camundongos , Animais , Bexiga Urinaria Neurogênica/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Rim/anormalidades , Camundongos Knockout
7.
J Am Soc Nephrol ; 34(2): 273-290, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414417

RESUMO

BACKGROUND: About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS: To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS: We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS: Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Humanos , Camundongos , Animais , Cães , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/anormalidades , Integrinas/metabolismo , Proteínas Mutantes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
8.
Am J Med Genet C Semin Med Genet ; 190(3): 325-343, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36208064

RESUMO

Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) is a developmental disorder of the kidney and/or genito-urinary tract that results in end stage kidney disease (ESKD) in up to 50% of children. Despite the congenital nature of the disease, CAKUT accounts for almost 10% of adult onset ESKD. Multiple lines of evidence suggest that CAKUT is a Mendelian disorder, including the observation of familial clustering of CAKUT. Pathogenesis in CAKUT is embryonic in origin, with disturbances of kidney and urinary tract development resulting in a heterogeneous range of disease phenotypes. Despite polygenic and environmental factors being implicated, a significant proportion of CAKUT is monogenic in origin, with studies demonstrating single gene defects in 10%-20% of patients with CAKUT. Here, we review monogenic disease causation with emphasis on the etiological role of gene developmental pathways in CAKUT.


Assuntos
Genética Médica , Sistema Urinário , Anormalidades Urogenitais , Humanos , Sistema Urinário/anormalidades , Sistema Urinário/patologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/patologia , Rim/anormalidades
9.
Eur Urol Open Sci ; 44: 106-112, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36185583

RESUMO

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases. Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield. Design setting and participants: We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted. Outcome measurements and statistical analysis: We evaluated and classified the CNVs using previously published predefined criteria. Results and limitations: In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%). Conclusions: CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT. Patient summary: We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause.

10.
J Nephrol ; 35(6): 1655-1665, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099770

RESUMO

BACKGROUND AND AIMS: Genetic testing presents a unique opportunity for diagnosis and management of genetic kidney diseases (GKD). Here, we describe the clinical utility and valuable impact of a specialized GKD clinic, which uses a variety of genomic sequencing strategies. METHODS: In this prospective cohort study, we undertook genetic testing in adults with suspected GKD according to prespecified criteria. Over 7 years, patients were referred from tertiary centres across Ireland to an academic medical centre as part of the Irish Kidney Gene Project. RESULTS: Among 677 patients, the mean age was of 37.2 ± 13 years, and 73.9% of the patients had family history of chronic kidney disease (CKD). We achieved a molecular diagnostic rate of 50.9%. Four genes accounted for more than 70% of identified pathogenic variants: PKD1 and PKD2 (n = 186, 53.4%), MUC1 (8.9%), and COL4A5 (8.3%). In 162 patients with a genetic diagnosis, excluding PKD1/PKD2, the a priori diagnosis was confirmed in 58% and in 13% the diagnosis was reclassified. A genetic diagnosis was established in 22 (29.7%) patients with CKD of uncertain aetiology. Based on genetic testing, a diagnostic kidney biopsy was unnecessary in 13 (8%) patients. Presence of family history of CKD and the underlying a priori diagnosis were independent predictors (P < 0.001) of a positive genetic diagnosis. CONCLUSIONS: A dedicated GKD clinic is a valuable resource, and its implementation of various genomic strategies has resulted in a direct, demonstrable clinical and therapeutic benefits to affected patients.


Assuntos
Rim Policístico Autossômico Dominante , Insuficiência Renal Crônica , Adulto , Testes Genéticos/métodos , Humanos , Rim , Pessoa de Meia-Idade , Mutação , Rim Policístico Autossômico Dominante/diagnóstico , Estudos Prospectivos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Canais de Cátion TRPP/genética , Adulto Jovem
11.
Am J Med Genet A ; 188(5): 1355-1367, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040250

RESUMO

Spina bifida (SB) is the second most common nonlethal congenital malformation. The existence of monogenic SB mouse models and human monogenic syndromes with SB features indicate that human SB may be caused by monogenic genes. We hypothesized that whole exome sequencing (WES) allows identification of potential candidate genes by (i) generating a list of 136 candidate genes for SB, and (ii) by unbiased exome-wide analysis. We generated a list of 136 potential candidate genes from three categories and evaluated WES data of 50 unrelated SB cases for likely deleterious variants in 136 potential candidate genes, and for potential SB candidate genes exome-wide. We identified 6 likely deleterious variants in 6 of the 136 potential SB candidate genes in 6 of the 50 SB cases, whereof 4 genes were derived from mouse models, 1 gene was derived from human nonsyndromic SB, and 1 gene was derived from candidate genes known to cause human syndromic SB. In addition, by unbiased exome-wide analysis, we identified 12 genes as potential candidates for SB. Identification of these 18 potential candidate genes in larger SB cohorts will help decide which ones can be considered as novel monogenic causes of human SB.


Assuntos
Exoma , Disrafismo Espinal , Animais , Modelos Animais de Doenças , Exoma/genética , Humanos , Camundongos , Disrafismo Espinal/genética , Sequenciamento do Exoma
12.
Am J Med Genet A ; 188(1): 310-313, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525250

RESUMO

Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of early-onset chronic kidney disease. In a previous study, we identified a heterozygous truncating variant in nuclear receptor-interacting protein 1 (NRIP1) as CAKUT causing via dysregulation of retinoic acid signaling. This large family remains the only family with NRIP1 variant reported so far. Here, we describe one additional CAKUT family with a truncating variant in NRIP1. By whole-exome sequencing, we identified one heterozygous frameshift variant (p.Asn676Lysfs*27) in an isolated CAKUT patient with bilateral hydroureteronephrosis and right grade V vesicoureteral reflux (VUR) and in the affected father with left renal hypoplasia. The variant is present twice in a heterozygous state in the gnomAD database of 125,000 control individuals. We report the second CAKUT family with a truncating variant in NRIP1, confirming that loss-of-function mutations in NRIP1 are a novel monogenic cause of human autosomal dominant CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Árabes , Humanos , Rim/anormalidades , Proteína 1 de Interação com Receptor Nuclear/genética , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Sequenciamento do Exoma
13.
Nephrol Dial Transplant ; 37(10): 1833-1843, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34473308

RESUMO

BACKGROUND: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidneys, may also represent monogenic causes of CAKUT. METHODS: We here performed whole-exome sequencing (WES) in 541 families with CAKUT and generated four lists of CAKUT candidate genes: (A) 36 FOX genes showing high expression during renal development, (B) 4 FOX genes known to cause CAKUT to validate list A, (C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families and (D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. RESULTS: To prioritize potential novel CAKUT candidates in the FOX gene family, we overlapped 36 FOX genes (list A) with lists C and D of WES-derived CAKUT candidates. Intersection with list C identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. CONCLUSIONS: We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Proteína Forkhead Box L2/genética , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-gama Nuclear de Hepatócito/genética , Humanos , Rim/anormalidades , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral , Sequenciamento do Exoma
14.
Biochem J ; 479(1): 91-109, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34935912

RESUMO

The TBX18 transcription factor regulates patterning and differentiation programs in the primordia of many organs yet the molecular complexes in which TBX18 resides to exert its crucial transcriptional function in these embryonic contexts have remained elusive. Here, we used 293 and A549 cells as an accessible cell source to search for endogenous protein interaction partners of TBX18 by an unbiased proteomic approach. We tagged endogenous TBX18 by CRISPR/Cas9 targeted genome editing with a triple FLAG peptide, and identified by anti-FLAG affinity purification and subsequent LC-MS analysis the ZMYM2 protein to be statistically enriched together with TBX18 in both 293 and A549 nuclear extracts. Using a variety of assays, we confirmed the binding of TBX18 to ZMYM2, a component of the CoREST transcriptional corepressor complex. Tbx18 is coexpressed with Zmym2 in the mesenchymal compartment of the developing ureter of the mouse, and mutations in TBX18 and in ZMYM2 were recently linked to congenital anomalies in the kidney and urinary tract (CAKUT) in line with a possible in vivo relevance of TBX18-ZMYM2 protein interaction in ureter development.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteômica/métodos , Transdução de Sinais/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Células A549 , Animais , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Humanos , Camundongos , Mutação , Gravidez , Ligação Proteica , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Transfecção , Ureter/embriologia , Ureter/metabolismo , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/metabolismo , Refluxo Vesicoureteral/genética , Refluxo Vesicoureteral/metabolismo
15.
Genet Med ; 24(2): 307-318, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906515

RESUMO

PURPOSE: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS: We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS: In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION: We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Alelos , Exoma/genética , Humanos , Rim/anormalidades , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral
16.
Am J Med Genet A ; 185(12): 3784-3792, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338422

RESUMO

The acronym VATER/VACTERL refers to the rare nonrandom association of the following component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac anomalies (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb anomalies (L). For the clinical diagnosis, the presence of at least three CFs is required, individuals presenting with only two CFs have been categorized as VATER/VACTERL-like. The majority of VATER/VACTERL individuals displays a renal phenotype. Hitherto, variants in FGF8, FOXF1, HOXD13, LPP, TRAP1, PTEN, and ZIC3 have been associated with the VATER/VACTERL association; however, large-scale re-sequencing could only confirm TRAP1 and ZIC3 as VATER/VACTERL disease genes, both associated with a renal phenotype. In this study, we performed exome sequencing in 21 individuals and their families with a renal VATER/VACTERL or VATER/VACTERL-like phenotype to identify potentially novel genetic causes. Exome analysis identified biallelic and X-chromosomal hemizygous potentially pathogenic variants in six individuals (29%) in B9D1, FREM1, ZNF157, SP8, ACOT9, and TTLL11, respectively. The online tool GeneMatcher revealed another individual with a variant in ZNF157. Our study suggests six biallelic and X-chromosomal hemizygous VATER/VACTERL disease genes implicating all six genes in the expression of human renal malformations.


Assuntos
Malformações Anorretais/genética , Atresia Esofágica/genética , Predisposição Genética para Doença , Cardiopatias/genética , Fístula Traqueoesofágica/genética , Malformações Anorretais/complicações , Malformações Anorretais/patologia , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Atresia Esofágica/complicações , Atresia Esofágica/patologia , Feminino , Genes Ligados ao Cromossomo X/genética , Estudos de Associação Genética , Proteínas de Choque Térmico HSP90/genética , Cardiopatias/complicações , Cardiopatias/patologia , Hemizigoto , Proteínas de Homeodomínio/genética , Humanos , Rim/anormalidades , Masculino , Receptores de Interleucina/genética , Fístula Traqueoesofágica/complicações , Fístula Traqueoesofágica/patologia , Fatores de Transcrição/genética , Sequenciamento do Exoma
17.
Mol Syndromol ; 12(3): 154-158, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34177431

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that displays a wide spectrum of clinical manifestations, often affecting multiple organs including the kidneys, brain, lungs, and skin. A pathogenic mutation in either the TSC1 or TSC2 gene can be detected in almost 85% of the cases, with mosaicism accounting for about half of the remaining cases. We report a case of TSC diagnosed clinically, requesting genetic counselling regarding reproductive risks. No mutation was identified on initial testing of peripheral blood; however, mosaicism for a likely pathogenic frameshift variant in TSC2 was detected at a level of 15% in renal angiomyolipoma tissue. Despite widespread clinical manifestations of TCS, this variant was not detected in skin fibroblasts or saliva, raising the possibility this is an isolated somatic mutation in renal tissue with the underlying germline mutation not yet identified. This case highlights the difficulties when counselling patients with mosaicism regarding their reproductive risks and prenatal diagnostic options.

18.
Am J Hum Genet ; 107(6): 1113-1128, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232676

RESUMO

The discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections. Further, the variants impair DAAM2-dependent actin remodeling processes: wild-type DAAM2 cDNA, but not cDNA representing missense variants found in individuals with NS, rescued reduced podocyte migration rate (PMR) and restored reduced filopodia formation in shRNA-induced DAAM2-knockdown podocytes. Filopodia restoration was also induced by the formin-activating molecule IMM-01. DAAM2 also co-localizes and co-immunoprecipitates with INF2, which is intriguing since variants in both formins cause NS. Using in vitro bulk and TIRF microscopy assays, we find that DAAM2 variants alter actin assembly activities of the formin. In a Xenopus daam2-CRISPR knockout model, we demonstrate actin dysregulation in vivo and glomerular maldevelopment that is rescued by WT-DAAM2 mRNA. We conclude that DAAM2 variants are a likely cause of monogenic human SRNS due to actin dysregulation in podocytes. Further, we provide evidence that DAAM2-associated SRNS may be amenable to treatment using actin regulating compounds.


Assuntos
Actinas/metabolismo , Variação Genética , Proteínas dos Microfilamentos/genética , Síndrome Nefrótica/genética , Proteínas rho de Ligação ao GTP/genética , Alelos , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Citoplasma/metabolismo , Forminas/metabolismo , Humanos , Rim/metabolismo , Glomérulos Renais/metabolismo , Mutação de Sentido Incorreto , Podócitos/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo , Sequenciamento do Exoma , Xenopus
19.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891193

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Mutação , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sistema Urinário/metabolismo , Anormalidades Urogenitais/genética , Proteínas de Anfíbios/antagonistas & inibidores , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Família , Feminino , Fatores de Transcrição Forkhead/metabolismo , Heterozigoto , Humanos , Lactente , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfolinos/genética , Morfolinos/metabolismo , Linhagem , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Sequenciamento do Exoma , Xenopus
20.
Genet Med ; 22(10): 1673-1681, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32475988

RESUMO

PURPOSE: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in childhood and adolescence. We aim to identify novel monogenic causes of CAKUT. METHODS: Exome sequencing was performed in 550 CAKUT-affected families. RESULTS: We discovered seven FOXC1 heterozygous likely pathogenic variants within eight CAKUT families. These variants are either never reported, or present in <5 alleles in the gnomAD database with ~141,456 controls. FOXC1 is a causal gene for Axenfeld-Rieger syndrome type 3 and anterior segment dysgenesis 3. Pathogenic variants in FOXC1 have not been detected in patients with CAKUT yet. Interestingly, mouse models for Foxc1 show severe CAKUT phenotypes with incomplete penetrance and variable expressivity. The FOXC1 variants are enriched in the CAKUT cohort compared with the control. Genotype-phenotype correlations showed that Axenfeld-Rieger syndrome or anterior segment dysgenesis can be caused by both truncating and missense pathogenic variants, and the missense variants are located at the forkhead domain. In contrast, for CAKUT, there is no truncating pathogenic variant, and all variants except one are located outside the forkhead domain. CONCLUSION: We thereby expanded the phenotype of FOXC1 pathogenic variants toward involvement of CAKUT, which can potentially be explained by allelism.


Assuntos
Anormalidades do Olho , Sistema Urinário , Criança , Fatores de Transcrição Forkhead/genética , Heterozigoto , Humanos , Rim , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...