Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(5): 3437-3447, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38363074

RESUMO

Human African trypanosomiasis (HAT), a neglected tropical disease caused by Trypanosoma brucei gambiense (Tbg) or Trypanosoma brucei rhodesiense (Tbr), remains a significant public health concern with over 55 million people at risk of infection. Current treatments for HAT face the challenges of poor efficacy, drug resistance, and toxicity. This study presents the synthesis and evaluation of chloronitrobenzamides (CNBs) against Trypanosoma species, identifying previously reported compound 52 as a potent and selective orally bioavailable antitrypanosomal agent. 52 was well tolerated in vivo and demonstrated favorable oral pharmacokinetics, maintaining plasma concentrations surpassing the cellular EC50 for over 24 h and achieving peak brain concentrations exceeding 7 µM in rodents after single oral administration (50 mg/kg). Treatment with 52 significantly extended the lifespan of mice infected with Trypanosoma congolense and T. brucei rhodesiense. These results demonstrate that 52 is a strong antitrypanosomal lead with potential for developing treatments for both human and animal African trypanosomiasis.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Camundongos , Tripanossomíase Africana/tratamento farmacológico , Trypanosoma brucei rhodesiense , Trypanosoma brucei gambiense , Tripanossomicidas/toxicidade , Tripanossomicidas/uso terapêutico
2.
Mol Cancer Ther ; 20(11): 2151-2165, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34413129

RESUMO

Pediatric sarcomas represent a heterogeneous group of malignancies that exhibit variable response to DNA-damaging chemotherapy. Schlafen family member 11 protein (SLFN11) increases sensitivity to replicative stress and has been implicated as a potential biomarker to predict sensitivity to DNA-damaging agents (DDA). SLFN11 expression was quantified in 220 children with solid tumors using IHC. Sensitivity to the PARP inhibitor talazoparib (TAL) and the topoisomerase I inhibitor irinotecan (IRN) was assessed in sarcoma cell lines, including SLFN11 knock-out (KO) and overexpression models, and a patient-derived orthotopic xenograft model (PDOX). SLFN11 was expressed in 69% of pediatric sarcoma sampled, including 90% and 100% of Ewing sarcoma and desmoplastic small round-cell tumors, respectively, although the magnitude of expression varied widely. In sarcoma cell lines, protein expression strongly correlated with response to TAL and IRN, with SLFN11 KO resulting in significant loss of sensitivity in vitro and in vivo Surprisingly, retrospective analysis of children with sarcoma found no association between SLFN11 levels and favorable outcome. Subsequently, high SLFN11 expression was confirmed in a PDOX model derived from a patient with recurrent Ewing sarcoma who failed to respond to treatment with TAL + IRN. Selective inhibition of BCL-xL increased sensitivity to TAL + IRN in SLFN11-positive resistant tumor cells. Although SLFN11 appears to drive sensitivity to replicative stress in pediatric sarcomas, its potential to act as a biomarker may be limited to certain tumor backgrounds or contexts. Impaired apoptotic response may be one mechanism of resistance to DDA-induced replicative stress.


Assuntos
Dano ao DNA/genética , Genômica/métodos , Proteínas Nucleares/metabolismo , Sarcoma de Ewing/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Nus , Adulto Jovem
3.
Cancer Res ; 80(17): 3507-3518, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32651255

RESUMO

Inhibition of members of the bromodomain and extraterminal (BET) family of proteins has proven a valid strategy for cancer chemotherapy. All BET identified to date contain two bromodomains (BD; BD1 and BD2) that are necessary for recognition of acetylated lysine residues in the N-terminal regions of histones. Chemical matter that targets BET (BETi) also interact via these domains. Molecular and cellular data indicate that BD1 and BD2 have different biological roles depending upon their cellular context, with BD2 particularly associated with cancer. We have therefore pursued the development of BD2-selective molecules both as chemical probes and as potential leads for drug development. Here we report the structure-based generation of a novel series of tetrahydroquinoline analogs that exhibit >50-fold selectivity for BD2 versus BD1. This selective targeting resulted in engagement with BD-containing proteins in cells, resulting in modulation of MYC proteins and downstream targets. These compounds were potent cytotoxins toward numerous pediatric cancer cell lines and were minimally toxic to nontumorigenic cells. In addition, unlike the pan BETi (+)-JQ1, these BD2-selective inhibitors demonstrated no rebound expression effects. Finally, we report a pharmacokinetic-optimized, metabolically stable derivative that induced growth delay in a neuroblastoma xenograft model with minimal toxicity. We conclude that BD2-selective agents are valid candidates for antitumor drug design for pediatric malignancies driven by the MYC oncogene. SIGNIFICANCE: This study presents bromodomain-selective BET inhibitors that act as antitumor agents and demonstrates that these molecules have in vivo activity towards neuroblastoma, with essentially no toxicity.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Neoplasias , Fatores de Transcrição/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Criança , Feminino , Humanos , Camundongos , Camundongos SCID , Neoplasias/genética , Neoplasias/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-myc/genética , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 10(1): 5144, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198459

RESUMO

Combination therapy is increasingly central to modern medicine. Yet reliable analysis of combination studies remains an open challenge. Previous work suggests that common methods of combination analysis are too susceptible to noise to support robust scientific conclusions. In this paper, we use simulated and real-world combination datasets to demonstrate that traditional index methods are unstable and biased by pharmacological and experimental conditions, whereas response-surface approaches such as the BRAID method are more consistent and unbiased. Using a publicly-available data set, we show that BRAID more accurately captures variations in compound mechanism of action, and is therefore better able to discriminate between synergistic, antagonistic, and additive interactions. Finally, we applied BRAID analysis to identify a clear pattern of consistently enhanced AKT sensitivity in a subset of cancer cell lines, and a far richer array of PARP inhibitor combination therapies for BRCA1-deficient cancers than would be identified by traditional synergy analysis.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Quimioterapia Combinada/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína BRCA1/efeitos dos fármacos , Linhagem Celular Tumoral , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Modelos Teóricos , Terapia de Alvo Molecular
5.
Bioorg Med Chem Lett ; 28(12): 2136-2142, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29776741

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) have a variety of potential indications that include management of pain and inflammation as well as chemoprevention and/or treatment of cancer. Furthermore, a specific form of ibuprofen, dexibuprofen or the S-(+) form, shows interesting neurological activities and has been proposed for the treatment of Alzheimer's disease. In a continuation of our work probing the anticancer activity of small sulindac libraries, we have prepared and screened a small diversity library of α-methyl substituted sulindac amides in the profen class. Several compounds of this series displayed promising activity compared with a lead sulindac analog.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sulindaco/farmacologia , Amidas/síntese química , Amidas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Sulindaco/síntese química , Sulindaco/química
6.
Future Med Chem ; 10(7): 743-753, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29671617

RESUMO

AIM: Experimental and epidemiological studies and clinical trials suggest that nonsteroidal anti-inflammatory drugs possess antitumor potential. Sulindac, a widely used nonsteroidal anti-inflammatory drug, can prevent adenomatous colorectal polyps and colon cancer, especially in patients with familial adenomatous polyposis. Sulindac sulfide amide (SSA) is an amide-linked sulindac sulfide analog that showed in vivo antitumor activity in a human colon tumor xenograft model. Results/methodology: A new analog series with heterocyclic rings such as oxazole or thiazole at the C-2 position of sulindac was prepared and screened against prostate, colon and breast cancer cell lines to probe the effect of these novel substitutions on the activity of sulindac analogs. CONCLUSION: In general, replacement of the amide function of SSA analogs had a negative impact on the cell lines tested. A small number of hits incorporating rigid oxazole or thiazole groups in the sulindac scaffold in place of the amide linkage show comparable activity to our lead agent SSA.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/prevenção & controle , Oxazóis/química , Sulindaco/análogos & derivados , Sulindaco/uso terapêutico , Tiazóis/química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Xenoenxertos , Humanos , Masculino , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Sulindaco/química
7.
Open Med Chem J ; 12: 1-12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29492166

RESUMO

BACKGROUND: Sulindac belongs to the chemically diverse family of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) that effectively prevent adenomatous colorectal polyps and colon cancer, especially in patients with familial adenomatous polyposis. Sulindac sulfide amide (SSA), an amide analog of sulindac sulfide, shows insignificant COX-related activity and toxicity while enhancing anticancer activity in vitro and demonstrating in vivo xenograft activity. OBJECTIVE: Develop structure-activity relationships in the sulindac amine series and identify analogs with promising anticancer activities. METHOD: A series of sulindac amine analogs were designed and synthesized and then further modified in a "libraries from libraries" approach to produce amide, sulfonamide and N,N-disubstituted sulindac amine sub-libraries. All analogs were screened against three cancer cell lines (prostate, colon and breast). RESULTS: Several active compounds were identified viain vitro cancer cell line screening with the most potent compound (26) in the nanomolar range. CONCLUSION: Compound 26 and analogs showing the most potent inhibitory activity may be considered for further design and optimization efforts as anticancer hit scaffolds.

8.
J Med Chem ; 61(7): 2694-2706, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29547693

RESUMO

We previously reported the discovery, validation, and structure-activity relationships of a series of piperidinyl ureas that potently inhibit the DCN1-UBE2M interaction. We demonstrated that compound 7 inhibits both the DCN1-UBE2M protein-protein interaction and DCN1-mediated cullin neddylation in biochemical assays and reduces levels of steady-state cullin neddylation in a squamous carcinoma cell line harboring DCN1 amplification. Although compound 7 exhibits good solubility and permeability, it is rapidly metabolized in microsomal models (CLint = 170 mL/min/kg). This work lays out the discovery of an orally bioavailable analogue, NAcM-OPT (67). Compound 67 retains the favorable biochemical and cellular activity of compound 7 but is significantly more stable both in vitro and in vivo. Compound 67 is orally bioavailable, well tolerated in mice, and currently used to study the effects of acute pharmacologic inhibition of the DCN1-UBE2M interaction on the NEDD8/CUL pathway.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas Culina/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Proteína NEDD8/antagonistas & inibidores , Proteína NEDD8/efeitos dos fármacos , Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/química
9.
J Med Chem ; 61(7): 2680-2693, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29547696

RESUMO

We previously discovered and validated a class of piperidinyl ureas that regulate defective in cullin neddylation 1 (DCN1)-dependent neddylation of cullins. Here, we report preliminary structure-activity relationship studies aimed at advancing our high-throughput screen hit into a tractable tool compound for dissecting the effects of acute DCN1-UBE2M inhibition on the NEDD8/cullin pathway. Structure-enabled optimization led to a 100-fold increase in biochemical potency and modestly increased solubility and permeability as compared to our initial hit. The optimized compounds inhibit the DCN1-UBE2M protein-protein interaction in our TR-FRET binding assay and inhibit cullin neddylation in our pulse-chase NEDD8 transfer assay. The optimized compounds bind to DCN1 and selectively reduce steady-state levels of neddylated CUL1 and CUL3 in a squamous cell carcinoma cell line. Ultimately, we anticipate that these studies will identify early lead compounds for clinical development for the treatment of lung squamous cell carcinomas and other cancers.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas Culina/antagonistas & inibidores , Proteína NEDD8/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Cristalografia por Raios X , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/tratamento farmacológico , Modelos Moleculares , Conformação Molecular , Proteína NEDD8/metabolismo , Ligação Proteica , Proteínas , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores
10.
Bioorg Med Chem ; 26(1): 25-36, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29170024

RESUMO

Within the last decade, the Bromodomain and Extra-Terminal domain family (BET) of proteins have emerged as promising drug targets in diverse clinical indications including oncology, auto-immune disease, heart failure, and male contraception. The BET family consists of four isoforms (BRD2, BRD3, BRD4, and BRDT/BRDT6) which are distinguished by the presence of two tandem bromodomains (BD1 and BD2) that independently recognize acetylated-lysine (KAc) residues and appear to have distinct biological roles. BET BD1 and BD2 bromodomains differ at five positions near the substrate binding pocket: the variation in the ZA channel induces different water networks nearby. We designed a set of congeneric 2- and 3-heteroaryl substituted tetrahydroquinolines (THQ) to differentially engage bound waters in the ZA channel with the goal of achieving bromodomain selectivity. SJ830599 (9) showed modest, but consistent, selectivity for BRD2-BD2. Using isothermal titration calorimetry, we showed that the binding of all THQ analogs in our study to either of the two bromodomains was enthalpy driven. Remarkably, the binding of 9 to BRD2-BD2 was marked by negative entropy and was entirely driven by enthalpy, consistent with significant restriction of conformational flexibility and/or engagement with bound waters. Co-crystallography studies confirmed that 9 did indeed stabilize a water-mediated hydrogen bond network. Finally, we report that 9 retained cytotoxicity against several pediatric cancer cell lines with EC50 values comparable to BET inhibitor (BETi) clinical candidates.


Assuntos
Proteínas/antagonistas & inibidores , Quinolinas/farmacologia , Termodinâmica , Água/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Proteínas/metabolismo , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
11.
PLoS Negl Trop Dis ; 11(12): e0006157, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29287089

RESUMO

Leishmaniasis is a parasitic infection that afflicts approximately 12 million people worldwide. There are several limitations to the approved drug therapies for leishmaniasis, including moderate to severe toxicity, growing drug resistance, and the need for extended dosing. Moreover, miltefosine is currently the only orally available drug therapy for this infection. We addressed the pressing need for new therapies by pursuing a two-step phenotypic screen to discover novel, potent, and orally bioavailable antileishmanials. First, we conducted a high-throughput screen (HTS) of roughly 600,000 small molecules for growth inhibition against the promastigote form of the parasite life cycle using the nucleic acid binding dye SYBR Green I. This screen identified approximately 2,700 compounds that inhibited growth by over 65% at a single point concentration of 10 µM. We next used this 2700 compound focused library to identify compounds that were highly potent against the disease-causing intra-macrophage amastigote form and exhibited limited toxicity toward the host macrophages. This two-step screening strategy uncovered nine unique chemical scaffolds within our collection, including two previously described antileishmanials. We further profiled two of the novel compounds for in vitro absorption, distribution, metabolism, excretion, and in vivo pharmacokinetics. Both compounds proved orally bioavailable, affording plasma exposures above the half-maximal effective concentration (EC50) concentration for at least 12 hours. Both compounds were efficacious when administered orally in a murine model of cutaneous leishmaniasis. One of the two compounds exerted potent activity against trypanosomes, which are kinetoplastid parasites related to Leishmania species. Therefore, this compound could help control multiple parasitic diseases. The promising pharmacokinetic profile and significant in vivo efficacy observed from our HTS hits highlight the utility of our two-step phenotypic screening strategy and strongly suggest that medicinal chemistry optimization of these newly identified scaffolds will lead to promising candidates for an orally available anti-parasitic drug.


Assuntos
Antiprotozoários/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Administração Oral , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/efeitos adversos , Antiprotozoários/química , Linhagem Celular , Química Farmacêutica , Descoberta de Drogas , Feminino , Humanos , Leishmania mexicana/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo
12.
Bioorg Med Chem Lett ; 27(20): 4614-4621, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28935266

RESUMO

Sulindac is a non-steroidal anti-inflammatory drug (NSAID) that has shown significant anticancer activity. Sulindac sulfide amide (1) possessing greatly reduced COX-related inhibition relative to sulindac displayed in vivo antitumor activity that was comparable to sulindac in a human colon tumor xenograft model. Inspired by these observations, a panel of diverse sulindac amide derivatives have been synthesized and their activity probed against three cancer cell lines (prostate, colon and breast). A neutral analog, compound 79 was identified with comparable potency relative to lead 1 and activity against a panel of lymphoblastic leukemia cell lines. Several new series also show good activity relative to the parent (1), including five analogs that also possess nanomolar inhibitory potencies against acute lymphoblastic leukemia cells. Several new analogs identified may serve as anticancer lead candidates for further development.


Assuntos
Amidas/química , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Sulindaco/análogos & derivados , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Estrutura-Atividade , Sulindaco/química , Sulindaco/farmacologia , Sulindaco/uso terapêutico
13.
Nat Chem Biol ; 13(8): 850-857, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28581483

RESUMO

N-terminal acetylation is an abundant modification influencing protein functions. Because ∼80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation-dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide-binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2-E3 ligases.


Assuntos
Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Acetilação/efeitos dos fármacos , Sítios de Ligação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína NEDD8 , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
14.
ACS Omega ; 2(5): 1985-2009, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28580438

RESUMO

Profiling of the kinase-binding capabilities of an aminopyrimidine analogue detected in a cellular screen of the St. Jude small-molecule collection led to the identification of a novel series of FMS-like tyrosine kinase 3 (FLT3) inhibitors. Structure-activity relationship studies led to the development of compounds exhibiting good potency against MV4-11 and MOLM13 acute myelogenous leukemia cells driven by FLT3, regardless of their FLT3 mutation status. In vitro pharmacological profiling demonstrated that compound 5e shows characteristics suitable for further preclinical development.

15.
PLoS One ; 11(10): e0164100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27768711

RESUMO

A variety of commercial analogs and a newer series of Sulindac derivatives were screened for inhibition of M. tuberculosis (Mtb) in vitro and specifically as inhibitors of the essential mycobacterial tubulin homolog, FtsZ. Due to the ease of preparing diverse analogs and a favorable in vivo pharmacokinetic and toxicity profile of a representative analog, the Sulindac scaffold may be useful for further development against Mtb with respect to in vitro bacterial growth inhibition and selective activity for Mtb FtsZ versus mammalian tubulin. Further discovery efforts will require separating reported mammalian cell activity from both antibacterial activity and inhibition of Mtb FtsZ. Modeling studies suggest that these analogs bind in a specific region of the Mtb FtsZ polymer that differs from human tubulin and, in combination with a pharmacophore model presented herein, future hybrid analogs of the reported active molecules that more efficiently bind in this pocket may improve antibacterial activity while improving other drug characteristics.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas do Citoesqueleto/antagonistas & inibidores , Mycobacterium tuberculosis/metabolismo , Animais , Antituberculosos/farmacologia , Linhagem Celular , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Sulindaco/farmacologia
16.
J Med Chem ; 59(17): 7950-62, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505686

RESUMO

Phenotypic whole-cell screening in erythrocytic cocultures of Plasmodium falciparum identified a series of dihydroisoquinolones that possessed potent antimalarial activity against multiple resistant strains of P. falciparum in vitro and show no cytotoxicity to mammalian cells. Systematic structure-activity studies revealed relationships between potency and modifications at N-2, C-3, and C-4. Careful structure-property relationship studies, coupled with studies of metabolism, addressed the poor aqueous solubility and metabolic vulnerability, as well as potential toxicological effects, inherent in the more potent primary screening hits such as 10b. Analogues 13h and 13i, with structural modifications at each site, were shown to possess excellent antimalarial activity in vivo. The (+)-(3S,4S) enantiomer of 13i and similar analogues were identified as the more potent. On the basis of these studies, we have selected (+)-13i for further study as a preclinical candidate.


Assuntos
Anilidas/química , Antimaláricos/química , Isoquinolinas/química , Plasmodium falciparum/efeitos dos fármacos , Anilidas/síntese química , Anilidas/farmacologia , Anilidas/toxicidade , Animais , Antimaláricos/síntese química , Antimaláricos/farmacologia , Antimaláricos/toxicidade , Técnicas de Cocultura , Eritrócitos/citologia , Eritrócitos/parasitologia , Humanos , Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Isoquinolinas/toxicidade , Camundongos , Microssomos Hepáticos/metabolismo , Plasmodium falciparum/fisiologia , Solubilidade , Estereoisomerismo , Relação Estrutura-Atividade
17.
Malar J ; 15(1): 270, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27165106

RESUMO

BACKGROUND: A diverse library of pre-fractionated plant extracts, generated by an automated high-throughput system, was tested using an in vitro anti-malarial screening platform to identify known or new natural products for lead development. The platform identifies hits on the basis of in vitro growth inhibition of Plasmodium falciparum and counter-screens for cytotoxicity to human foreskin fibroblast or embryonic kidney cell lines. The physical library was supplemented by early-stage collection of analytical data for each fraction to aid rapid identification of the active components within each screening hit. RESULTS: A total of 16,177 fractions from 1300 plants were screened, identifying several P. falciparum inhibitory fractions from 35 plants. Although individual fractions were screened for bioactivity to ensure adequate signal in the analytical characterizations, fractions containing less than 2.0 mg of dry weight were combined to produce combined fractions (COMBIs). Fractions of active COMBIs had EC50 values of 0.21-50.28 and 0.08-20.04 µg/mL against chloroquine-sensitive and -resistant strains, respectively. In Berberis thunbergii, eight known alkaloids were dereplicated quickly from its COMBIs, but berberine was the most-active constituent against P. falciparum. The triterpenoids α-betulinic acid and ß-betulinic acid of Eugenia rigida were also isolated as hits. Validation of the anti-malarial discovery platform was confirmed by these scaled isolations from B. thunbergii and E. rigida. CONCLUSIONS: These results demonstrate the value of curating and exploring a library of natural products for small molecule drug discovery. Attention given to the diversity of plant species represented in the library, focus on practical analytical data collection, and the use of counter-screens all facilitate the identification of anti-malarial compounds for lead development or new tools for chemical biology.


Assuntos
Antimaláricos/farmacologia , Produtos Biológicos/farmacologia , Extratos Vegetais/farmacologia , Plantas/química , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade
18.
J Med Chem ; 59(2): 559-77, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26632965

RESUMO

We previously reported a novel inhibitor of the ataxia-telangiectasia mutated (ATM) kinase, which is a target for novel radiosensitizing drugs. While our initial lead, compound 4, was relatively potent and nontoxic, it exhibited poor stability to oxidative metabolism and relatively poor selectivity against other kinases. The current study focused on balancing potency and selectivity with metabolic stability through structural modification to the metabolized site on the quinazoline core. We performed extensive structure-activity and structure-property relationship studies on this quinazoline ATM kinase inhibitor in order to identify structural variants with enhanced selectivity and metabolic stability. We show that, while the C-7-methoxy group is essential for potency, replacing the C-6-methoxy group considerably improves metabolic stability without affecting potency. Promising analogues 20, 27g, and 27n were selected based on in vitro pharmacology and evaluated in murine pharmacokinetic and tolerability studies. Compound 27g possessed significantly improve pharmacokinetics relative to that of 4. Compound 27g was also significantly more selective against other kinases than 4. Therefore, 27g is a good candidate for further development as a potential radiosensitizer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Radiossensibilizantes/síntese química , Radiossensibilizantes/farmacologia , Animais , Ensaio de Unidades Formadoras de Colônias , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Feminino , Humanos , Técnicas In Vitro , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Quinazolinas/síntese química , Quinazolinas/farmacologia , Radiossensibilizantes/farmacocinética , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Eur J Med Chem ; 102: 9-13, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26241873

RESUMO

Breast cancer remains the leading cause of cancer-related death among women. The invasive triple-negative subtype is unresponsive to estrogen therapy, and few effective treatments are available. In search of new chemical scaffolds to target this disease, we conducted a phenotypic screen against the human breast carcinoma cell lines MDA-MB-231, MA11, and MCF-7 using terrestrial natural products. Natural products that preferentially inhibited proliferation of triple-negative MDA-MB-231 cells over estrogen receptor-positive cells were further studied; herein we focused on the abietanes. The activity of the abietane carnosol prompted us to generate a focus library from the readily available (+)-dehydroabietylamine. The lead compound 61 displayed a promising EC50 of 9.0 µM against MDA-MB-231 and our mechanistic studies indicate it induced apoptosis, which was associated with activation of caspase-9 and -3 and the cleavage of PARP. Here we describe our current progress towards this promising therapeutic candidate.


Assuntos
Abietanos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Abietanos/química , Abietanos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia
20.
Nat Genet ; 47(8): 878-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26075792

RESUMO

Cancers are characterized by non-random chromosome copy number alterations that presumably contain oncogenes and tumor-suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28 recurrent chromosomal alterations in ependymoma. Through a series of mouse models, we validate eight new ependymoma oncogenes and ten new ependymoma TSGs that converge on a small number of cell functions, including vesicle trafficking, DNA modification and cholesterol biosynthesis, identifying these as potential new therapeutic targets.


Assuntos
Ependimoma/genética , Genes Supressores de Tumor , Predisposição Genética para Doença/genética , Oncogenes/genética , Animais , Células Cultivadas , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Ependimoma/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Nus , Camundongos Transgênicos , Microscopia Confocal , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...