Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 39(10): 110932, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675774

RESUMO

A long-range circuit linking the medial frontal cortex to the primary visual cortex (V1) has been proposed to mediate visual selective attention in mice during visually guided behavior. Here, we use in vivo two-photon functional imaging to measure the endogenous activity of axons of A24b/M2 neurons from this region projecting to layer 1 of V1 (A24b/M2-V1axons) in mice either passively viewing stimuli or performing a go/no-go visually guided task. We observe that while A24b/M2-V1axons are recruited under these conditions, this is not linked to enhancement of neural or behavioral measures of sensory coding. Instead, A24b/M2-V1axon activity is associated with licking behavior, modulated by reward, and biased toward the sensory cortical hemisphere representing the stimulus currently being discriminated.


Assuntos
Córtex Visual , Animais , Axônios , Discriminação Psicológica , Camundongos , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
2.
J Neurosci Methods ; 363: 109343, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464650

RESUMO

BACKGROUND: The development of new high throughput approaches for neuroscience such as high-density silicon probes and 2-photon imaging have led to a renaissance in visual neuroscience. However, generating the stimuli needed to evoke activity in the visual system still represents a non-negligible difficulty for experimentalists. While several widely used software toolkits exist to deliver such stimuli, they all suffer from some shortcomings. Primarily, the hardware needed to effectively display such stimuli comes at a significant financial cost, and secondly, triggering and/or timing the stimuli such that it can be accurately synchronized with other devices requires the use of legacy hardware, further hardware, or bespoke solutions. RESULTS: Here we present RPG (Raspberry Pi Gratings), a Python package written for the Raspberry Pi, which overcomes these issues. Specifically, the Raspberry Pi is a low-cost, credit card sized computer with general purpose input/output pins, allowing RPG to be triggered to deliver stimuli and to provide real-time feedback on stimulus timing. RPG delivers stimuli at 60 frames per second and the feedback of frame timings is accurate to 10s of microseconds. COMPARISON WITH EXISTING METHOD(S): With respect to the accuracy of frame timings, the performance of RPG is at least as accurate as commonly used packages. However, the inbuilt ability to trigger stimuli and the real-time feedback of frame timings will be extremely useful for certain experiments. CONCLUSIONS: RPG provides a simple to use Python interface that is capable of generating drifting sine wave gratings, Gabor patches and displaying raw images/video.


Assuntos
Neurociências , Software
3.
Cereb Cortex ; 30(8): 4424-4437, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32147692

RESUMO

The rodent retrosplenial cortex (RSC) functions as an integrative hub for sensory and motor signals, serving roles in both navigation and memory. While RSC is reciprocally connected with the sensory cortex, the form in which sensory information is represented in the RSC and how it interacts with motor feedback is unclear and likely to be critical to computations involved in navigation such as path integration. Here, we used 2-photon cellular imaging of neural activity of putative excitatory (CaMKII expressing) and inhibitory (parvalbumin expressing) neurons to measure visual and locomotion evoked activity in RSC and compare it to primary visual cortex (V1). We observed stimulus position and orientation tuning, and a retinotopic organization. Locomotion modulation of activity of single neurons, both in darkness and light, was more pronounced in RSC than V1, and while locomotion modulation was strongest in RSC parvalbumin-positive neurons, visual-locomotion integration was found to be more supralinear in CaMKII neurons. Longitudinal measurements showed that response properties were stably maintained over many weeks. These data provide evidence for stable representations of visual cues in RSC that are spatially selective. These may provide sensory data to contribute to the formation of memories of spatial information.


Assuntos
Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Sinais (Psicologia) , Camundongos
4.
Neuron ; 103(2): 173-174, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319042

RESUMO

While many studies indicate that dendrites can perform a range of local computations on their inputs, work from the Harnett lab in this issue of Neuron suggests that the vast majority of active dendritic events are synchronized across the somato-dendritic axis of cortical pyramidal neurons.


Assuntos
Dendritos , Neurônios , Células Piramidais
5.
eNeuro ; 6(3)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31209152

RESUMO

Copy number variation (CNV) at chromosomal region 15q11.2 is linked to increased risk of neurodevelopmental disorders including autism and schizophrenia. A significant gene at this locus is cytoplasmic fragile X mental retardation protein (FMRP) interacting protein 1 (CYFIP1). CYFIP1 protein interacts with FMRP, whose monogenic absence causes fragile X syndrome (FXS). Fmrp knock-out has been shown to reduce tonic GABAergic inhibition by interacting with the δ-subunit of the GABAA receptor (GABAAR). Using in situ hybridization (ISH), qPCR, Western blotting techniques, and patch clamp electrophysiology in brain slices from a Cyfip1 haploinsufficient mouse, we examined δ-subunit mediated tonic inhibition in the dentate gyrus (DG). In wild-type (WT) mice, DG granule cells (DGGCs) responded to the δ-subunit-selective agonist THIP with significantly increased tonic currents. In heterozygous mice, no significant difference was observed in THIP-evoked currents in DGGCs. Phasic GABAergic inhibition in DGGC was also unaltered with no difference in properties of spontaneous IPSCs (sIPSCs). Additionally, we demonstrate that DG granule cell layer (GCL) parvalbumin-positive interneurons (PV+-INs) have functional δ-subunit-mediated tonic GABAergic currents which, unlike DGGC, are also modulated by the α1-selective drug zolpidem. Similar to DGGC, both IPSCs and THIP-evoked currents in PV+-INs were not different between Cyfip1 heterozygous and WT mice. Supporting our electrophysiological data, we found no significant change in hippocampal δ-subunit mRNA expression or protein level and no change in α1/α4-subunit mRNA expression. Thus, Cyfip1 haploinsufficiency, mimicking human 15q11.2 microdeletion syndrome, does not alter hippocampal phasic or tonic GABAergic inhibition, substantially differing from the Fmrp knock-out mouse model.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Inibidores , Interneurônios/fisiologia , Receptores de GABA/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Giro Denteado/metabolismo , Feminino , Haploinsuficiência , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Receptores de GABA/metabolismo
7.
Nat Rev Neurosci ; 19(2): 107-118, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29321683

RESUMO

During inattentive wakefulness and non-rapid eye movement (NREM) sleep, the neocortex and thalamus cooperatively engage in rhythmic activities that are exquisitely reflected in the electroencephalogram as distinctive rhythms spanning a range of frequencies from <1 Hz slow waves to 13 Hz alpha waves. In the thalamus, these diverse activities emerge through the interaction of cell-intrinsic mechanisms and local and long-range synaptic inputs. One crucial feature, however, unifies thalamic oscillations of different frequencies: repetitive burst firing driven by voltage-dependent Ca2+ spikes. Recent evidence reveals that thalamic Ca2+ spikes are inextricably linked to global somatodendritic Ca2+ transients and are essential for several forms of thalamic plasticity. Thus, we propose herein that alongside their rhythm-regulation function, thalamic oscillations of low-vigilance states have a plasticity function that, through modifications of synaptic strength and cellular excitability in local neuronal assemblies, can shape ongoing oscillations during inattention and NREM sleep and may potentially reconfigure thalamic networks for faithful information processing during attentive wakefulness.


Assuntos
Nível de Alerta/fisiologia , Plasticidade Neuronal/fisiologia , Sono de Ondas Lentas/fisiologia , Tálamo/fisiologia , Animais , Humanos
8.
J Neurosci ; 37(21): 5319-5333, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28450536

RESUMO

Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca2+-imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that "tonic"' and low-threshold-spike (LTS) "burst" APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons.SIGNIFICANCE STATEMENT In most neurons, action potentials (APs) initiate in the axosomatic region and propagate into the dendritic tree to provide a retrograde signal that conveys information about the level of cellular output to the locations that receive most input: the dendrites. In thalamocortical and thalamic reticular nucleus neurons, the site of AP generation and the true extent of backpropagation remain unknown. Using patch-clamp recordings, this study measures dendritic propagation of APs directly in these neurons. In either cell type, high-frequency low-threshold spike burst or lower-frequency tonic APs undergo substantial voltage attenuation as they spread into the dendritic tree. Therefore, backpropagating spikes in these cells can only influence signaling in the proximal part of the dendritic tree.


Assuntos
Potenciais de Ação , Neurônios GABAérgicos/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Dendritos/fisiologia , Feminino , Masculino , Ratos , Ratos Wistar , Núcleos Talâmicos/citologia
9.
J Neurosci ; 36(13): 3735-54, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030759

RESUMO

Thalamocortical neurons have thousands of synaptic connections from layer VI corticothalamic neurons distributed across their dendritic trees. Although corticothalamic synapses provide significant excitatory input, it remains unknown how different spatial and temporal input patterns are integrated by thalamocortical neurons. Using dendritic recording, 2-photon glutamate uncaging, and computational modeling, we investigated how rat dorsal lateral geniculate nucleus thalamocortical neurons integrate excitatory corticothalamic feedback. We find that unitary corticothalamic inputs produce small somatic EPSPs whose amplitudes are passively normalized and virtually independent of the site of origin within the dendritic tree. Furthermore, uncaging of MNI glutamate reveals that thalamocortical neurons have postsynaptic voltage-dependent mechanisms that can amplify integrated corticothalamic input. These mechanisms, involving NMDA receptors and T-type Ca(2+)channels, require temporally synchronous synaptic activation but not spatially coincident input patterns. In hyperpolarized thalamocortical neurons, T-type Ca(2+)channels produce nonlinear amplification of temporally synchronous inputs, whereas asynchronous inputs are not amplified. At depolarized potentials, the input-output function for synchronous synaptic input is linear but shows enhanced gain due to activity-dependent recruitment of NMDA receptors. Computer simulations reveal that EPSP amplification by T-type Ca(2+)channels and NMDA receptors occurs when synaptic inputs are either clustered onto individual dendrites or when they are distributed throughout the dendritic tree. Consequently, postsynaptic EPSP amplification mechanisms limit the "modulatory" effects of corticothalamic synaptic inputs on thalamocortical neuron membrane potential and allow these synapses to act as synchrony-dependent "drivers" of thalamocortical neuron firing. These complex thalamocortical input-output transformations significantly increase the influence of corticothalamic feedback on sensory information transfer. SIGNIFICANCE STATEMENT: Neurons in first-order thalamic nuclei transmit sensory information from the periphery to the cortex. However, the numerically dominant synaptic input to thalamocortical neurons comes from the cortex, which provides a strong, activity-dependent modulatory feedback influence on information flow through the thalamus. Here, we reveal how individual quantal-sized corticothalamic EPSPs propagate within thalamocortical neuron dendrites and how different spatial and temporal input patterns are integrated by these cells. We find that thalamocortical neurons have voltage- and synchrony-dependent postsynaptic mechanisms, involving NMDA receptors and T-type Ca(2+)channels that allow nonlinear amplification of integrated corticothalamic EPSPs. These mechanisms significantly increase the responsiveness of thalamocortical neurons to cortical excitatory input and broaden the "modulatory" influence exerted by corticothalamic synapses.


Assuntos
Córtex Cerebral/citologia , Dendritos/fisiologia , Retroalimentação Fisiológica/fisiologia , Neurônios/citologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Cálcio/farmacologia , Simulação por Computador , Dendritos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Masculino , Modelos Neurológicos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Piridazinas/farmacologia , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Tálamo/citologia
10.
J Neurosci ; 35(47): 15505-22, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609149

RESUMO

Low-threshold Ca(2+) spikes (LTS) are an indispensible signaling mechanism for neurons in areas including the cortex, cerebellum, basal ganglia, and thalamus. They have critical physiological roles and have been strongly associated with disorders including epilepsy, Parkinson's disease, and schizophrenia. However, although dendritic T-type Ca(2+) channels have been implicated in LTS generation, because the properties of low-threshold spiking neuron dendrites are unknown, the precise mechanism has remained elusive. Here, combining data from fluorescence-targeted dendritic recordings and Ca(2+) imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS generation is established. Our data demonstrate that key somatodendritic electrical conduction properties are highly conserved between glutamatergic thalamocortical neurons and GABAergic thalamic reticular nucleus neurons and that these properties are critical for LTS generation. In particular, the efficiency of soma to dendrite voltage transfer is highly asymmetric in low-threshold spiking cells, and in the somatofugal direction, these neurons are particularly electrotonically compact. Our data demonstrate that LTS have remarkably similar amplitudes and occur synchronously throughout the dendritic tree. In fact, these Ca(2+) spikes cannot occur locally in any part of the cell, and hence we reveal that LTS are generated by a unique whole-cell mechanism that means they always occur as spatially global spikes. This all-or-none, global electrical and biochemical signaling mechanism clearly distinguishes LTS from other signals, including backpropagating action potentials and dendritic Ca(2+)/NMDA spikes, and has important consequences for dendritic function in low-threshold spiking neurons. SIGNIFICANCE STATEMENT: Low-threshold Ca(2+) spikes (LTS) are critical for important physiological processes, including generation of sleep-related oscillations, and are implicated in disorders including epilepsy, Parkinson's disease, and schizophrenia. However, the mechanism underlying LTS generation in neurons, which is thought to involve dendritic T-type Ca(2+) channels, has remained elusive due to a lack of knowledge of the dendritic properties of low-threshold spiking cells. Combining dendritic recordings, two-photon Ca(2+) imaging, and computational modeling, this study reveals that dendritic properties are highly conserved between two prominent low-threshold spiking neurons and that these properties underpin a whole-cell somatodendritic spike generation mechanism that makes the LTS a unique global electrical and biochemical signal in neurons.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Dendritos/fisiologia , Neurônios/fisiologia , Animais , Cálcio/fisiologia , Feminino , Corpos Geniculados/fisiologia , Masculino , Ratos , Ratos Wistar
11.
J Neurosci ; 35(14): 5442-58, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855163

RESUMO

During sleep and anesthesia, neocortical neurons exhibit rhythmic UP/DOWN membrane potential states. Although UP states are maintained by synaptic activity, the mechanisms that underlie the initiation and robust rhythmicity of UP states are unknown. Using a physiologically validated model of UP/DOWN state generation in mouse neocortical slices whereby the cholinergic tone present in vivo is reinstated, we show that the regular initiation of UP states is driven by an electrophysiologically distinct subset of morphologically identified layer 5 neurons, which exhibit intrinsic rhythmic low-frequency burst firing at ~0.2-2 Hz. This low-frequency bursting is resistant to block of glutamatergic and GABAergic transmission but is absent when slices are maintained in a low Ca(2+) medium (an alternative, widely used model of cortical UP/DOWN states), thus explaining the lack of rhythmic UP states and abnormally prolonged DOWN states in this condition. We also characterized the activity of various other pyramidal and nonpyramidal neurons during UP/DOWN states and found that an electrophysiologically distinct subset of layer 5 regular spiking pyramidal neurons fires earlier during the onset of network oscillations compared with all other types of neurons recorded. This study, therefore, identifies an important role for cell-type-specific neuronal activity in driving neocortical UP states.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Neocórtex/citologia , Rede Nervosa/fisiologia , Periodicidade , Células Piramidais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Ondas Encefálicas/efeitos dos fármacos , Cálcio/metabolismo , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Neurotransmissores/farmacologia , Células Piramidais/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-26834570

RESUMO

In the mammalian central nervous system, most sensory information passes through primary sensory thalamic nuclei, however the consequence of this remains unclear. Various propositions exist, likening the thalamus to a gate, or a high pass filter. Here, using a simple leaky integrate and fire model based on physiological parameters, we show that the thalamus behaves akin to a low pass filter. Specifically, as individual cells in the thalamus rely on consistent drive to spike, stimuli that is rapidly and continuously changing over time such that it activates sensory cells with different receptive fields are unable to drive thalamic spiking. This means that thalamic encoding is robust to sensory noise, however it induces a lag in sensory representation. Thus, the thalamus stabilizes encoding of sensory information, at the cost of response rate.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Animais , Córtex Cerebral/fisiologia , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores/fisiologia , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Ratos Wistar , Células Ganglionares da Retina/fisiologia , Técnicas de Cultura de Tecidos
13.
J Neurophysiol ; 112(9): 2037-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24623510

RESUMO

Thalamocortical neurons integrate sensory and cortical activity and are regulated by input from inhibitory neurons in the thalamic reticular nucleus. Evidence suggests that during bursts of action potentials, dendritic calcium transients are seen throughout the dendritic tree of thalamocortical cells. Here, we review a recent study that suggests these calcium transients regulate inhibitory input, and we attempt to reconcile studies that differ on which ion channels are the source of the calcium.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Potenciais Pós-Sinápticos Inibidores , Potenciação de Longa Duração , Tálamo/fisiologia , Animais , Humanos , Tálamo/metabolismo
14.
PLoS One ; 9(2): e89995, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587175

RESUMO

Computational models of gamma oscillations have helped increase our understanding of the mechanisms that shape these 40-80 Hz cortical rhythms. Evidence suggests that interneurons known as basket cells are responsible for the generation of gamma oscillations. However, current models of gamma oscillations lack the dynamic short term synaptic plasticity seen at basket cell-basket cell synapses as well as the large autaptic synapses basket cells are known to express. Hence, I sought to extend the Wang-Buzsáki model of gamma oscillations to include these features. I found that autapses increased the synchrony of basket cell membrane potentials across the network during neocortical gamma oscillations as well as allowed the network to oscillate over a broader range of depolarizing drive. I also found that including realistic synaptic depression filtered the output of the network. Depression restricted the network to oscillate in the 60-80 Hz range rather than the 40-120 Hz range seen in the standard model. This work shows the importance of including accurate synapses in any future model of gamma oscillations.


Assuntos
Potenciais da Membrana/fisiologia , Modelos Neurológicos , Inibição Neural/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Simulação por Computador , Humanos , Interneurônios/fisiologia , Neocórtex/anatomia & histologia , Neocórtex/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia
15.
Front Neural Circuits ; 7: 171, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24298239

RESUMO

A large body of work now shows the importance of GABAA receptor-mediated tonic inhibition in regulating CNS function. However, outside of pathological conditions, there is relatively little evidence that the magnitude of tonic inhibition is itself under regulation. Here we review the mechanisms by which tonic inhibition is known to be modulated, and outline the potential behavioral consequences of this modulation. Specifically, we address the ability of protein kinase A and C to phosphorylate the extrasynaptic receptors responsible for the tonic GABAA current, and how G-protein coupled receptors can regulate tonic inhibition through these effectors. We then speculate about the possible functional consequences of regulating the magnitude of the tonic GABAA current.


Assuntos
Encéfalo/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/fisiologia , Animais , Fosforilação
16.
PLoS One ; 8(11): e79062, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244421

RESUMO

γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4ß1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4ß1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents.


Assuntos
Adjuvantes Anestésicos/farmacologia , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Oxibato de Sódio/farmacologia , Adjuvantes Anestésicos/farmacocinética , Animais , Encéfalo/patologia , Feminino , Masculino , Narcolepsia/tratamento farmacológico , Narcolepsia/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Oxibato de Sódio/farmacocinética
17.
J Neurosci ; 33(9): 3780-5, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447590

RESUMO

Tonic inhibitory GABA(A) receptor-mediated currents are observed in numerous cell types in the CNS, including thalamocortical neurons of the ventrobasal thalamus, dentate gyrus granule cells, and cerebellar granule cells. Here we show that in rat brain slices, activation of postsynaptic GABA(B) receptors enhances the magnitude of the tonic GABA(A) current recorded in these cell types via a pathway involving G G proteins, adenylate cyclase, and cAMP-dependent protein kinase. Using a combination of pharmacology and knockout mice, we show that this pathway is independent of potassium channels or GABA transporters. Furthermore, the enhancement in tonic current is sufficient to significantly alter the excitability of thalamocortical neurons. These results demonstrate for the first time a postsynaptic crosstalk between GABA(B) and GABA(A) receptors.


Assuntos
Encéfalo/citologia , Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-B/fisiologia , Sinapses/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Biofísica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Interações Medicamentosas , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Feminino , GABAérgicos/farmacologia , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de GABA-A/deficiência , Receptores de GABA-B/deficiência , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Tetrodotoxina/farmacologia , Tionucleotídeos/farmacologia
19.
20.
J Neurosci ; 30(44): 14854-61, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048144

RESUMO

Inhibitory projections from the striatum and globus pallidus converge onto GABAergic projection neurons of the substantia nigra pars reticulata (SNr). Based on existing structural and functional evidence, these pathways are likely to differentially regulate the firing of SNr neurons. We sought to investigate the functional differences in inhibitory striatonigral and pallidonigral traffic using whole-cell voltage clamp in brain slices with these pathways preserved. We found that striatonigral IPSCs exhibited a high degree of paired-pulse facilitation. We tracked this facilitation over development and found the facilitation as the animal aged, but stabilized by postnatal day 17 (P17), with a paired pulse ratio of 2. We also found that the recovery from facilitation accelerated over development, again, reaching a stable phenotype by P17. In contrast, pallidonigral synapses show paired-pulse depression, and this depression could be solely explained by presynaptic changes. The mean paired-pulse ratio of 0.67 did not change over development, but the recovery from depression slowed over development. Pallidonigral IPSCs were significantly faster than striatonigral IPSCs when measured at the soma. Finally, under current clamp, prolonged bursts of striatal IPSPs were able to consistently silence the pacemaker activity of nigral neurons, whereas pallidal inputs depressed, allowing nigral neurons to reinstate firing. These findings highlight the importance of differential dynamics of neurotransmitter release in regulating the circuit behavior of the basal ganglia.


Assuntos
Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Substância Negra/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Globo Pálido/crescimento & desenvolvimento , Globo Pálido/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/crescimento & desenvolvimento , Neostriado/fisiologia , Técnicas de Cultura de Órgãos , Tempo de Reação/fisiologia , Substância Negra/crescimento & desenvolvimento , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...