Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(8): e14552, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39163151

RESUMO

Petroleum-based plastics levy significant environmental and economic costs that can be alleviated with sustainably sourced, biodegradable, and bio-based polymers such as polyhydroxyalkanoates (PHAs). However, industrial-scale production of PHAs faces barriers stemming from insufficient product yields and high costs. To address these challenges, we must look beyond the current suite of microbes for PHA production and investigate non-model organisms with versatile metabolisms. In that vein, we assessed PHA production by the photosynthetic purple non-sulfur bacteria (PNSB) Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species accumulate PHA across photo-heterotrophic, photo-hydrogenotrophic, photo-ferrotrophic, and photo-electrotrophic growth conditions, with either ammonium chloride (NH4Cl) or dinitrogen gas (N2) as nitrogen sources. Our data indicate that nitrogen source plays a significant role in dictating PHA synthesis, with N2 fixation promoting PHA production during photoheterotrophy and photoelectrotrophy but inhibiting production during photohydrogenotrophy and photoferrotrophy. We observed the highest PHA titres (up to 44.08 mg/L, or 43.61% cell dry weight) when cells were grown photoheterotrophically on sodium butyrate with N2, while production was at its lowest during photoelectrotrophy (as low as 0.04 mg/L, or 0.16% cell dry weight). We also find that photohydrogenotrophically grown cells supplemented with NH4Cl exhibit the highest electron yields - up to 58.89% - while photoheterotrophy demonstrated the lowest (0.27%-1.39%). Finally, we highlight superior electron conversion and PHA production compared to a related PNSB, Rhodopseudomonas palustris TIE-1. This study illustrates the value of studying non-model organisms like Rhodomicrobium for sustainable PHA production and indicates future directions for exploring PNSB metabolisms.


Assuntos
Processos Fototróficos , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Nitrogênio/metabolismo , Cloreto de Amônio/metabolismo
2.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292726

RESUMO

Polyhydroxybutyrate (PHB) is a bio-based, biodegradable alternative to petroleum-based plastics. PHB production at industrial scales remains infeasible, in part due to insufficient yields and high costs. Addressing these challenges requires identifying novel biological chassis for PHB production and modifying known biological chassis to enhance production using sustainable, renewable inputs. Here, we take the former approach and present the first description of PHB production by two prosthecate photosynthetic purple non-sulfur bacteria (PNSB), Rhodomicrobium vannielii and Rhodomicrobium udaipurense. We show that both species produce PHB across photoheterotrophic, photoautotrophic, photoferrotrophic, and photoelectrotrophic growth conditions. Both species show the greatest PHB titers during photoheterotrophic growth on butyrate with dinitrogen gas as a nitrogen source (up to 44.08 mg/L), while photoelectrotrophic growth demonstrated the lowest titers (up to 0.13 mg/L). These titers are both greater (photoheterotrophy) and less (photoelectrotrophy) than those observed previously in a related PNSB, Rhodopseudomonas palustris TIE-1. On the other hand, we observe the highest electron yields during photoautotrophic growth with hydrogen gas or ferrous iron electron donors, and these electron yields were generally greater than those observed previously in TIE-1. These data suggest that non model organisms like Rhodomicrobium should be explored for sustainable PHB production and highlights utility in exploring novel biological chassis.

3.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35381088

RESUMO

Microbial biofilms are ubiquitous. In marine and freshwater ecosystems, microbe-mineral interactions sustain biogeochemical cycles, while biofilms found on plants and animals can range from pathogens to commensals. Moreover, biofouling and biocorrosion represent significant challenges to industry. Bioprocessing is an opportunity to take advantage of biofilms and harness their utility as a chassis for biocommodity production. Electrochemical bioreactors have numerous potential applications, including wastewater treatment and commodity production. The literature examining these applications has demonstrated that the cell-surface interface is vital to facilitating these processes. Therefore, it is necessary to understand the state of knowledge regarding biofilms' role in bioprocessing. This mini-review discusses bacterial biofilm formation, cell-surface redox interactions, and the role of microbial electron transfer in bioprocesses. It also highlights some current goals and challenges with respect to microbe-mediated bioprocessing and future perspectives.


Assuntos
Fontes de Energia Bioelétrica , Elétrons , Biofilmes , Ecossistema , Eletrodos , Transporte de Elétrons , Oxirredução
4.
Microbiol Resour Announc ; 10(13)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795336

RESUMO

Recent attempts to sequence regions of the Rhodomicrobium vannielii ATCC 17100 genome revealed discrepancies with the previously published genome. We report the revised draft genome sequences of the type strains Rhodomicrobium vannielii ATCC 17100 and Rhodomicrobium udaipurense JA643. These revisions will facilitate genetic studies of phototrophic metabolism in these bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA