Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2778: 291-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478285

RESUMO

Secretin proteins form pores in the outer membranes of Gram-negative bacteria, and as such provide a means of transporting a wide variety of molecules out of or in to the cell. They are important components of several different bacterial secretion systems, surface filament assembly machineries, and virus assembly complexes. Despite accommodating a diverse assortment of molecules, including virulence factors, folded proteins, and whole viruses, the secretin family of proteins is highly conserved, particularly in their membrane-embedded ß-barrel domain. We describe here a protocol for the expression, purification and cryo-EM structural determination of the pIV secretin from the Ff family of filamentous bacteriophages.


Assuntos
Proteínas da Membrana Bacteriana Externa , Secretina , Secretina/química , Secretina/metabolismo , Microscopia Crioeletrônica , Ligação Proteica , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
Elife ; 132024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251732

RESUMO

Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life. Notwithstanding their importance, little is known about archaeal S-layers at the atomic level. Here, we combined single-particle cryo electron microscopy, cryo electron tomography, and Alphafold2 predictions to generate an atomic model of the two-component S-layer of Sulfolobus acidocaldarius. The outer component of this S-layer (SlaA) is a flexible, highly glycosylated, and stable protein. Together with the inner and membrane-bound component (SlaB), they assemble into a porous and interwoven lattice. We hypothesise that jackknife-like conformational changes in SlaA play important roles in S-layer assembly.


Assuntos
Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/metabolismo , Archaea , Bactérias , Parede Celular
3.
Nat Microbiol ; 8(10): 1834-1845, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709902

RESUMO

Translational control is an essential process for the cell to adapt to varying physiological or environmental conditions. To survive adverse conditions such as low nutrient levels, translation can be shut down almost entirely by inhibiting ribosomal function. Here we investigated eukaryotic hibernating ribosomes from the microsporidian parasite Spraguea lophii in situ by a combination of electron cryo-tomography and single-particle electron cryo-microscopy. We show that microsporidian spores contain hibernating ribosomes that are locked in a dimeric (100S) state, which is formed by a unique dimerization mechanism involving the beak region. The ribosomes within the dimer are fully assembled, suggesting that they are ready to be activated once the host cell is invaded. This study provides structural evidence for dimerization acting as a mechanism for ribosomal hibernation in microsporidia, and therefore demonstrates that eukaryotes utilize this mechanism in translational control.


Assuntos
Microsporídios , Animais , Microscopia Crioeletrônica , Esporos , Dimerização , Eucariotos , Ribossomos
4.
Nat Commun ; 14(1): 2724, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169795

RESUMO

Phages are viruses that infect bacteria and dominate every ecosystem on our planet. As well as impacting microbial ecology, physiology and evolution, phages are exploited as tools in molecular biology and biotechnology. This is particularly true for the Ff (f1, fd or M13) phages, which represent a widely distributed group of filamentous viruses. Over nearly five decades, Ffs have seen an extraordinary range of applications, yet the complete structure of the phage capsid and consequently the mechanisms of infection and assembly remain largely mysterious. In this work, we use cryo-electron microscopy and a highly efficient system for production of short Ff-derived nanorods to determine a structure of a filamentous virus including the tips. We show that structure combined with mutagenesis can identify phage domains that are important in bacterial attack and for release of new progeny, allowing new models to be proposed for the phage lifecycle.


Assuntos
Bacteriófagos , Inovirus , Viroses , Humanos , Microscopia Crioeletrônica , Ecossistema , Bacteriófagos/genética , Inovirus/genética , Bactérias
5.
Nat Commun ; 13(1): 710, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132062

RESUMO

Archaea use a molecular machine, called the archaellum, to swim. The archaellum consists of an ATP-powered intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. In many species, several archaellin homologs are encoded in the same operon; however, previous structural studies indicated that archaellum filaments mainly consist of only one protein species. Here, we use electron cryo-microscopy to elucidate the structure of the archaellum from Methanocaldococcus villosus at 3.08 Å resolution. The filament is composed of two alternating archaellins, suggesting that the architecture and assembly of archaella is more complex than previously thought. Moreover, we identify structural elements that may contribute to the filament's flexibility.


Assuntos
Flagelos/química , Methanocaldococcus/química , Proteínas Arqueais/química , Sítios de Ligação , Microscopia Crioeletrônica , Flagelos/fisiologia , Flagelina/química , Glicosilação , Metais/química , Methanocaldococcus/fisiologia , Modelos Moleculares , Multimerização Proteica , Subunidades Proteicas
6.
Nat Commun ; 12(1): 6316, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728631

RESUMO

The Ff family of filamentous bacteriophages infect gram-negative bacteria, but do not cause lysis of their host cell. Instead, new virions are extruded via the phage-encoded pIV protein, which has homology with bacterial secretins. Here, we determine the structure of pIV from the f1 filamentous bacteriophage at 2.7 Å resolution by cryo-electron microscopy, the first near-atomic structure of a phage secretin. Fifteen f1 pIV subunits assemble to form a gated channel in the bacterial outer membrane, with associated soluble domains projecting into the periplasm. We model channel opening and propose a mechanism for phage egress. By single-cell microfluidics experiments, we demonstrate the potential for secretins such as pIV to be used as adjuvants to increase the uptake and efficacy of antibiotics in bacteria. Finally, we compare the f1 pIV structure to its homologues to reveal similarities and differences between phage and bacterial secretins.


Assuntos
Microscopia Crioeletrônica/métodos , Inovirus/metabolismo , Secretina/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Transporte Biológico , Elementos Estruturais de Proteínas , Alinhamento de Sequência , Proteínas não Estruturais Virais/metabolismo
7.
Commun Biol ; 3(1): 402, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728168

RESUMO

Prion diseases, a group of incurable, lethal neurodegenerative disorders of mammals including humans, are caused by prions, assemblies of misfolded host prion protein (PrP). A single point mutation (G127V) in human PrP prevents prion disease, however the structural basis for its protective effect remains unknown. Here we show that the mutation alters and constrains the PrP backbone conformation preceding the PrP ß-sheet, stabilising PrP dimer interactions by increasing intermolecular hydrogen bonding. It also markedly changes the solution dynamics of the ß2-α2 loop, a region of PrP structure implicated in prion transmission and cross-species susceptibility. Both of these structural changes may affect access to protein conformers susceptible to prion formation and explain its profound effect on prion disease.


Assuntos
Doenças Priônicas/genética , Proteínas Priônicas/genética , Príons/genética , Conformação Proteica , Animais , Humanos , Mutação Puntual/genética , Doenças Priônicas/patologia , Proteínas Priônicas/ultraestrutura , Príons/ultraestrutura , Conformação Proteica em Folha beta/genética
8.
Proc Natl Acad Sci U S A ; 108(37): 15174-8, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21876142

RESUMO

Bacterial cell surfaces are commonly decorated with a layer formed from multiple copies of adhesin proteins whose binding interactions initiate colonization and infection processes. In this study, we investigate the physical deformability of the UspA1 adhesin protein from Moraxella catarrhalis, a causative agent of middle-ear infections in humans. UspA1 binds a range of extracellular proteins including fibronectin, and the epithelial cellular receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Electron microscopy indicates that unliganded UspA1 is densely packed at, and extends about 800 Å from, the Moraxella surface. Using a modified atomic force microscope, we show that the adhesive properties and thickness of the UspA1 layer at the cell surface varies on addition of either fibronectin or CEACAM1. This in situ analysis is then correlated with the molecular structure of UspA1. To provide an overall model for UspA1, we have determined crystal structures for two N-terminal fragments which are then combined with a previous structure of the CEACAM1-binding site. We show that the UspA1-fibronectin complex is formed between UspA1 head region and the 13th type-III domain of fibronectin and, using X-ray scattering, that the complex involves an angular association between these two proteins. In combination with a previous study, which showed that the CEACAM1-UspA1 complex is distinctively bent in solution, we correlate these observations on isolated fragments of UspA1 with its in situ response on the cell surface. This study therefore provides a rare direct demonstration of protein conformational change at the cell surface.


Assuntos
Adesinas Bacterianas/metabolismo , Antígenos CD/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Moléculas de Adesão Celular/metabolismo , Fibronectinas/metabolismo , Mecanotransdução Celular , Moraxella catarrhalis/metabolismo , Adesinas Bacterianas/ultraestrutura , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Membrana Celular/metabolismo , Humanos , Microscopia de Força Atômica , Modelos Moleculares , Moraxella catarrhalis/ultraestrutura , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
J Mol Biol ; 396(4): 908-23, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20026068

RESUMO

Pseudomonas aeruginosa is an opportunist Gram-negative bacterial pathogen responsible for a wide range of infections in immunocompromized individuals and is a leading cause of mortality in cystic fibrosis patients. A number of secreted virulence factors, including various proteolytic enzymes, contribute to the establishment and maintenance of Pseudomonas infection. One such is LasA, an M23 metallopeptidase related to autolytic glycylglycine endopeptidases such as Staphylococcus aureus lysostaphin and LytM, and to DD-endopeptidases involved in entry of bacteriophage to host bacteria. LasA is implicated in a range of processes related to Pseudomonas virulence, including stimulating ectodomain shedding of the cell surface heparan sulphate proteoglycan syndecan-1 and elastin degradation in connective tissue. Here we present crystal structures of active LasA as a complex with tartrate and in the uncomplexed form. While the overall fold resembles that of the other M23 family members, the LasA active site is less constricted and utilizes a different set of metal ligands. The active site of uncomplexed LasA contains a five-coordinate zinc ion with trigonal bipyramidal geometry and two metal-bound water molecules. Using these structures as a starting point, we propose a model for substrate binding by LasA that explains its activity against a wider range of substrates than those used by related lytic enzymes, and offer a catalytic mechanism for M23 metallopeptidases consistent with available structural and mutagenesis data. Our results highlight how LasA is a structurally distinct member of this endopeptidase family, consistent with its activity against a wider range of substrates and with its multiple roles in Pseudomonas virulence.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Metaloproteases/química , Metaloproteases/metabolismo , Pseudomonas aeruginosa/enzimologia , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Pseudomonas aeruginosa/patogenicidade , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Virulência
10.
EMBO J ; 27(12): 1779-89, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18497748

RESUMO

Moraxella catarrhalis is a ubiquitous human-specific bacterium commonly associated with upper and lower respiratory tract infections, including otitis media, sinusitis and chronic obstructive pulmonary disease. The bacterium uses an autotransporter protein UspA1 to target an important human cellular receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Using X-ray crystallography, we show that the CEACAM1 receptor-binding region of UspA1 unusually consists of an extended, rod-like left-handed trimeric coiled-coil. Mutagenesis and binding studies of UspA1 and the N-domain of CEACAM1 have been used to delineate the interacting surfaces between ligand and receptor and guide assembly of the complex. However, solution scattering, molecular modelling and electron microscopy analyses all indicate that significant bending of the UspA1 coiled-coil stalk also occurs. This explains how UspA1 can engage CEACAM1 at a site far distant from its head group, permitting closer proximity of the respective cell surfaces during infection.


Assuntos
Adesinas Bacterianas/metabolismo , Antígenos CD/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Moléculas de Adesão Celular/metabolismo , Adesinas Bacterianas/química , Antígenos CD/química , Proteínas da Membrana Bacteriana Externa/química , Sítios de Ligação , Moléculas de Adesão Celular/química , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Receptores de Superfície Celular , Termodinâmica
11.
Biochemistry ; 46(37): 10664-74, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17715946

RESUMO

Metallo-beta-lactamases (mbetals) are zinc-dependent enzymes that hydrolyze a wide range of beta-lactam antibiotics. The mbetal active site features an invariant Asp-120 that ligates one of the two metal ions (Zn2) and a metal-bridging water/hydroxide (Wat1). Previous studies show that substitutions at Asp-120 dramatically affect mbetal activity, but no consensus exists as to its role in beta-lactam turnover. Here we present crystal structures of the Asn and Cys mutants of Asp-120 of the L1 mbetal from Stenotrophomonas maltophilia. Both mutants retain a dinuclear zinc center with Wat1 present. In the essentially inactive Cys enzyme Zn2 is displaced to a more buried position relative to that in the wild-type enzyme. In the catalytically impaired Asn enzyme the coordination of Zn2 is altered, neither it nor Wat1 is coordinated by Asn-120, and the N-terminal 19 amino acids, important to cooperative interactions between subunits in the wild-type enzyme, are disordered. Comparison with the structure of L1 complexed with the hydrolyzed oxacephem moxalactam suggests that in the Cys mutant Zn2 can no longer make stabilizing interactions with anionic nitrogen species formed in the hydrolytic reaction. The diminished activity of the Asn mutant arises from a combination of loss of intersubunit interactions and impaired proton transfer to, and reduced interaction of Zn2 with, the substrate amide nitrogen. We conclude that, while interactions of Asp-120 with active site water molecules are important to proton transfer and possibly nucleophilic attack by Wat1, its primary role is to optimally position Zn2 for catalytically important interactions with the charged amide nitrogen of substrate.


Assuntos
Ácido Aspártico/química , Proteínas Mutantes/química , Stenotrophomonas maltophilia/enzimologia , beta-Lactamases/química , Asparagina/química , Sítios de Ligação , Cristalografia por Raios X , Moxalactam/química , Subunidades Proteicas/química , Soluções , Eletricidade Estática , Zinco
12.
J Biol Chem ; 282(38): 27760-8, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17640870

RESUMO

The storage tissues of many plants contain protease inhibitors that are believed to play an important role in defending the plant from invasion by pests and pathogens. These proteinaceous inhibitor molecules belong to a number of structurally distinct families. We describe here the isolation, purification, initial inhibitory properties, and three-dimensional structure of a novel trypsin inhibitor from seeds of Veronica hederifolia (VhTI). The VhTI peptide inhibits trypsin with a submicromolar apparent K(i) and is expected to be specific for trypsin-like serine proteases. VhTI differs dramatically in structure from all previously described families of trypsin inhibitors, consisting of a helix-turn-helix motif, with the two alpha helices tightly associated by two disulfide bonds. Unusually, the crystallized complex is in the form of a stabilized acyl-enzyme intermediate with the scissile bond of the VhTI inhibitor cleaved and the resulting N-terminal portion of the inhibitor remaining attached to the trypsin catalytic serine 195 by an ester bond. A synthetic, truncated version of the VhTI peptide has also been produced and co-crystallized with trypsin but, surprisingly, is seen to be uncleaved and consequently forms a noncovalent complex with trypsin. The VhTI peptide shows that effective enzyme inhibitors can be constructed from simple helical motifs and provides a new scaffold on which to base the design of novel serine protease inhibitors.


Assuntos
Tripsina/farmacologia , Veronica/enzimologia , Motivos de Aminoácidos , Animais , Domínio Catalítico , Bovinos , Cristalografia por Raios X/métodos , Focalização Isoelétrica , Cinética , Conformação Molecular , Peptídeo Hidrolases/química , Extratos Vegetais/química , Desnaturação Proteica , Estrutura Terciária de Proteína , Serina/química , Tripsina/química
13.
J Mol Biol ; 357(1): 263-74, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16413579

RESUMO

Oxidative damage of DNA results in the formation of many products, including 8-oxodeoxyguanosine, which has been used as a marker to quantify DNA damage. Earlier studies have demonstrated that avidin, a protein prevalent in egg-white and which has high affinity for the vitamin biotin, binds to 8-oxodeoxyguanosine and related bases. In this study, we have determined crystal structures of avidin in complex with 8-oxodeoxyguanosine and 8-oxodeoxyadenosine. In each case, the base is observed to bind within the biotin-binding site of avidin. However, the mode of association between the bases and the protein varies and, unlike in the avidin:biotin complex, complete ordering of the protein in this region does not accompany binding. Fluorescence studies indicate that in solution the individual bases, and a range of oligonucleotides, bind to avidin with micromolar affinity. Only one of the modes of binding observed is consistent with recognition of oxidised purines when incorporated within a DNA oligomer, and from this structure a model is proposed for the selective binding of avidin to DNA containing oxidatively damaged deoxyguanosine. These studies illustrate the molecular basis by which avidin might act as a marker of DNA damage, although the low levels of binding observed are inconsistent with the recognition of oxidised purines forming a major physiological role for avidin.


Assuntos
Avidina/química , Biotina/metabolismo , DNA/química , Desoxiadenosinas/química , Desoxiguanosina/análogos & derivados , 8-Hidroxi-2'-Desoxiguanosina , Avidina/genética , Avidina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Desoxiadenosinas/metabolismo , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína
14.
Biochemistry ; 44(49): 16221-8, 2005 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-16331982

RESUMO

Malaria caused by Plasmodium vivax is a major cause of global morbidity and, in rare cases, mortality. Lactate dehydrogenase is an essential Plasmodium protein and, therefore, a potential antimalarial drug target. Ideally, drugs directed against this target would be effective against both major species of Plasmodium, P. falciparum and P. vivax. In this study, the crystal structure of the lactate dehydrogenase protein from P. vivax has been solved and is compared to the equivalent structure from the P. falciparum enzyme. The active sites and cofactor binding pockets of both enzymes are found to be highly similar and differentiate these enzymes from their human counterparts. These structures suggest effective inhibition of both enzymes should be readily achievable with a common inhibitor. The crystal structures of both enzymes have also been solved in complex with the synthetic cofactor APADH. The unusual cofactor binding site in these Plasmodium enzymes is found to readily accommodate both NADH and APADH, explaining why the Plasmodium enzymes retain enzymatic activity in the presence of this synthetic cofactor.


Assuntos
Isoenzimas/química , L-Lactato Desidrogenase/química , NAD/análogos & derivados , NAD/química , Plasmodium vivax/enzimologia , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Modelos Moleculares , Conformação Proteica
15.
Mol Biochem Parasitol ; 142(2): 137-48, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15978953

RESUMO

Gossypol is a di-sesquiterpene natural-product in the form of a functionalised binaphthyl and is isolated from cotton plants. The compound has long been known to exhibit anti-malarial and other biological activities. Previous studies have indicated that compounds of this type target Plasmodium falciparum lactate dehydrogenase (pfLDH), an essential enzyme for energy generation within the parasite. In this study, we report that simple naphthalene-based compounds, the core of the gossypol structure, exhibit weak inhibition of the parasite lactate dehydrogenase. Crystal structures of the complexes formed by binding of these naphthalene-based compounds to their target enzyme have been used to delineate the molecular features likely to form the gossypol binding site. Two modes of binding are observed: one overlapping the pyruvate but not the co-factor site, the other bridging the binding sites for the co-factor nicontinamide group and pyruvate substrate. This latter site encompasses molecular features unique to Plasmodium forms of LDH and is likely to represent the mode of binding for gossypol derivatives that show selectivity for the parasite enzymes. We also report a substrate analogue that unexpectedly binds within the adenine pocket of the co-factor groove. Although these core pharmacophore-like molecules only exhibit low levels of inhibitory activity, these molecular snapshots provide a rational basis for renewed structure-based development of naphthalene-based compounds as anti-malarial agents.


Assuntos
Antimaláricos/metabolismo , Inibidores Enzimáticos/metabolismo , Gossipol/análogos & derivados , Gossipol/metabolismo , L-Lactato Desidrogenase/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/farmacologia , Sítios de Ligação , Cristalografia , Inibidores Enzimáticos/farmacologia , Gossipol/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Modelos Moleculares , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...