Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640946

RESUMO

Oxidative modification of 5-methylcytosine (5mC) by ten-eleven translocation (TET) DNA dioxygenases generates 5-hydroxymethylcytosine (5hmC), the most abundant form of oxidized 5mC. Existing single-cell bisulfite sequencing methods cannot resolve 5mC and 5hmC, leaving the cell-type-specific regulatory mechanisms of TET and 5hmC largely unknown. Here, we present joint single-nucleus (hydroxy)methylcytosine sequencing (Joint-snhmC-seq), a scalable and quantitative approach that simultaneously profiles 5hmC and true 5mC in single cells by harnessing differential deaminase activity of APOBEC3A toward 5mC and chemically protected 5hmC. Joint-snhmC-seq profiling of single nuclei from mouse brains reveals an unprecedented level of epigenetic heterogeneity of both 5hmC and true 5mC at single-cell resolution. We show that cell-type-specific profiles of 5hmC or true 5mC improve multimodal single-cell data integration, enable accurate identification of neuronal subtypes and uncover context-specific regulatory effects on cell-type-specific genes by TET enzymes.

2.
Curr Opin Neurobiol ; 59: 174-179, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31430649

RESUMO

Methyl-CpG binding protein 2 (MeCP2) plays fundamental roles in the nervous system, as both gain-of-function and loss-of-function of MECP2 are associated with severe neurological conditions. Understanding the molecular function of MeCP2 will not only provide insights into the pathogenesis of MeCP2-related disorders, but will also shed light on the epigenetic regulation of neuronal function. In the past few years, a number of studies have provided mechanistic evidence that MeCP2 recruits co-repressor complexes to particular sequences of methylated DNA. Additionally, innovative design and high-throughput sequencing technologies have provided opportunities to study the effects of MeCP2 on the neuronal transcriptome at an unprecedented level of detail, demonstrating that MeCP2 modulates gene expression in a context-specific manner. These findings have raised new questions and challenged current models of MeCP2 function. In this review, we describe several recent developments, highlight future challenges, and articulate a model by which MeCP2 functions as an organizer of chromatin architecture to modulate global gene expression in the nervous system.


Assuntos
Cromatina , Síndrome de Rett , Metilação de DNA , Epigênese Genética , Genoma , Genômica , Proteína 2 de Ligação a Metil-CpG
3.
Hum Mol Genet ; 25(15): 3284-3302, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27365498

RESUMO

Mouse models of the transcriptional modulator Methyl-CpG-Binding Protein 2 (MeCP2) have advanced our understanding of Rett syndrome (RTT). RTT is a 'prototypical' neurodevelopmental disorder with many clinical features overlapping with other intellectual and developmental disabilities (IDD). Therapeutic interventions for RTT may therefore have broader applications. However, the reliance on the laboratory mouse to identify viable therapies for the human condition may present challenges in translating findings from the bench to the clinic. In addition, the need to identify outcome measures in well-chosen animal models is critical for preclinical trials. Here, we report that a novel Mecp2 rat model displays high face validity for modelling psychomotor regression of a learned skill, a deficit that has not been shown in Mecp2 mice. Juvenile play, a behavioural feature that is uniquely present in rats and not mice, is also impaired in female Mecp2 rats. Finally, we demonstrate that evaluating the molecular consequences of the loss of MeCP2 in both mouse and rat may result in higher predictive validity with respect to transcriptional changes in the human RTT brain. These data underscore the similarities and differences caused by the loss of MeCP2 among divergent rodent species which may have important implications for the treatment of individuals with disease-causing MECP2 mutations. Taken together, these findings demonstrate that the Mecp2 rat model is a complementary tool with unique features for the study of RTT and highlight the potential benefit of cross-species analyses in identifying potential disease-relevant preclinical outcome measures.


Assuntos
Comportamento Animal , Proteína 2 de Ligação a Metil-CpG , Mutação , Síndrome de Rett , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...