Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 317, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104128

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a genetic disorder causing poor mucociliary clearance in the airways and subsequent respiratory infection. The recently approved triple therapy Elexacaftor-Tezacaftor-Ivacaftor (ETI) has significantly improved lung function and decreased airway infection in persons with CF (pwCF). This improvement has been shown to occur rapidly, within the first few weeks of treatment. The effects of longer term ETI therapy on lung infection dynamics, however, remain mostly unknown. RESULTS: Here, we applied 16S rRNA gene amplicon sequencing, untargeted metabolomics, and neutral models to high-resolution, longitudinally collected sputum samples from pwCF on ETI therapy (162 samples, 7 patients) and compared to similarly collected data set from pwCF not taking ETI (630 samples, 9 patients). Because ETI reduces sputum production, samples were collected in freezers provided in the subject's homes at least 3 months after first taking ETI, with those on ETI collecting a sample approximately weekly. The lung function (%ppFEV1) of those in our longitudinal cohort significantly improved after ETI (6.91, SD = 7.74), indicating our study cohort was responsive to ETI. The daily variation of alpha- and beta-diversity of both the microbiome and metabolome was higher for those on ETI, reflecting a more dynamic microbial community and chemical environment during treatment. Four of the seven subjects on ETI were persistently infected with Pseudomonas or Burkholderia in their sputum throughout the sampling period while the total bacterial load significantly decreased with time (R = - 0.42, p = 0.01) in only one subject. The microbiome and metabolome dynamics on ETI were personalized, where some subjects had a progressive change with time on therapy, whereas others had no association with time on treatment. To further classify the augmented variance of the CF microbiome under therapy, we fit the microbiome data to a Hubbell neutral dynamics model in a patient-stratified manner and found that the subjects on ETI had better fit to a neutral model. CONCLUSION: This study shows that the longitudinal microbiology and chemistry in airway secretions from subjects on ETI has become more dynamic and neutral and that after the initial improvement in lung function, many are still persistently infected with CF pathogens.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Simulação de Dinâmica Molecular , RNA Ribossômico 16S , Pulmão , Regulador de Condutância Transmembrana em Fibrose Cística , Mutação
2.
Res Sq ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37841851

RESUMO

Background: Cystic fibrosis (CF) is a genetic disorder causing poor mucociliary clearance in the airways and subsequent respiratory infection. The recently approved triple therapy Elexacaftor-Tezacaftor-Ivacaftor (ETI) has significantly improved the lung function and decreased airway infection of persons with CF (pwCF). This improvement has been shown to occur rapidly, within the first few weeks of treatment. The effects of longer term ETI therapy on lung infection dynamics, however, remains mostly unknown. Results: Here, we applied 16S rRNA gene amplicon sequencing, untargeted metabolomics, and neutral models to high-resolution, longitudinally collected sputum samples from pwCF on ETI therapy (162 samples, 7 patients) and compared to similarly collected data set of CF subjects not taking ETI (630 samples, 9 patients). Because ETI reduces sputum production, samples were collected in freezers provided in the subject's homes at least 3 months after first taking ETI, with those on ETI collecting a sample approximately weekly. The lung function (%ppFEV1) of those in our longitudinal cohort significantly improved after ETI (6.91, SD = 7.74), indicating our study cohort was responsive to ETI. The daily variation of alpha- and beta-diversity of both the microbiome and metabolome was higher for those on ETI, reflecting a more dynamic microbial community and chemical environment during treatment. Four of the seven subjects on ETI were persistently infected with Pseudomonas or Burkholderia in their sputum throughout the sampling period. The microbiome and metabolome dynamics on ETI were personalized, where some subjects had a progressive change with time on therapy, whereas others had no association with time on treatment. To further classify the augmented variance of the CF microbiome under therapy, we fit the microbiome data to a Hubbell neutral dynamics model in a patient-stratified manner and found that the subjects on ETI had better fit to a neutral model. Conclusion: This study shows that the longitudinal microbiology and chemistry in airway secretions from subjects on ETI has become more dynamic and neutral, and that after the initial improvement in lung function, many are still persistently infected with CF pathogens.

3.
J Cyst Fibros ; 21(6): 996-1005, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34824018

RESUMO

BACKGROUND: Elexacaftor-Tezacaftor-Ivacaftor (ETI) therapy is showing promising efficacy for treatment of cystic fibrosis (CF) and is becoming more widely available since recent FDA approval. However, little is known about how these drugs will affect lung infections, which are the leading cause of morbidity and mortality among people with CF (pwCF). METHODS: We analyzed sputum microbiome and metabolome data from pwCF (n=24) before and after ETI therapy using 16S rRNA gene sequencing and untargeted metabolomics. RESULTS: The sputum microbiome diversity, particularly its evenness, was increased (p=0.036) and the microbiome profiles were different between individuals before and after therapy (PERMANOVA F=1.92, p=0.044). Despite these changes, the microbiomes remained more similar within an individual than across the sampled population. No specific microbial taxa differed in relative abundance before and after therapy, but the collective log-ratio of classic CF pathogens to anaerobes significantly decreased (p=0.013). The sputum metabolome also showed changes associated with ETI (PERMANOVA F=4.22, p=0.002) and was characterized by greater variation across subjects while on treatment. Changes in the metabolome were driven by a decrease in peptides, amino acids, and metabolites from the kynurenine pathway, which were associated with a decrease in CF pathogens. Metabolism of the three small molecules that make up ETI was extensive, including previously uncharacterized structural modifications. CONCLUSIONS: ETI therapy is associated with a changing microbiome and metabolome in airway mucus. This effect was stronger on sputum biochemistry, which may reflect changing niche space for microbial residency in lung mucus as the drug's effects take hold. FUNDING: This project was funded by a National Institute of Allergy and Infectious Disease Grant R01AI145925.


Assuntos
Fibrose Cística , Microbiota , Humanos , Fibrose Cística/genética , RNA Ribossômico 16S/genética , Aminofenóis/uso terapêutico , Benzodioxóis/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Pulmão/metabolismo
4.
Microbiome ; 7(1): 23, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760325

RESUMO

BACKGROUND: Studies of the cystic fibrosis (CF) lung microbiome have consistently shown that lung function decline is associated with decreased microbial diversity due to the dominance of opportunistic pathogens. However, how this phenomenon is reflected in the metabolites and chemical environment of lung secretions remains poorly understood. METHODS: Here we investigated the microbial and molecular composition of CF sputum samples using 16S rRNA gene amplicon sequencing and untargeted tandem mass spectrometry to determine their interrelationships and associations with clinical measures of disease severity. RESULTS: The CF metabolome was found to exist in two states: one from patients with more severe disease that had higher molecular diversity and more Pseudomonas aeruginosa and the other from patients with better lung function having lower metabolite diversity and fewer pathogenic bacteria. The two molecular states were differentiated by the abundance and diversity of peptides and amino acids. Patients with severe disease and more pathogenic bacteria had higher levels of peptides. Analysis of the carboxyl terminal residues of these peptides indicated that neutrophil elastase and cathepsin G were responsible for their generation, and accordingly, these patients had higher levels of proteolytic activity from these enzymes in their sputum. The CF pathogen Pseudomonas aeruginosa was correlated with the abundance of amino acids and is known to primarily feed on them in the lung. CONCLUSIONS: In cases of severe CF lung disease, proteolysis by host enzymes creates an amino acid-rich environment that P. aeruginosa comes to dominate, which may contribute to the pathogen's persistence by providing its preferred carbon source.


Assuntos
Fibrose Cística/patologia , Pulmão/microbiologia , Pulmão/patologia , Microbiota/fisiologia , Neutrófilos/enzimologia , Pseudomonas aeruginosa/isolamento & purificação , Aminoácidos/metabolismo , Catepsina G/metabolismo , Fibrose Cística/microbiologia , Disbiose/microbiologia , Humanos , Elastase de Leucócito/metabolismo , Microbiota/genética , Proteólise , Proteoma/análise , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , RNA Ribossômico 16S/genética , Escarro/microbiologia , Espectrometria de Massas em Tandem
6.
ISME J ; 9(4): 1024-38, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25514533

RESUMO

There is a poor understanding of how the physiology of polymicrobial communities in cystic fibrosis (CF) lungs contributes to pulmonary exacerbations and lung function decline. In this study, a microbial culture system based on the principles of the Winogradsky column (WinCF system) was developed to study the physiology of CF microbes. The system used glass capillary tubes filled with artificial sputum medium to mimic a clogged airway bronchiole. Chemical indicators were added to observe microbial physiology within the tubes. Characterization of sputum samples from seven patients showed variation in pH, respiration, biofilm formation and gas production, indicating that the physiology of CF microbial communities varied among patients. Incubation of homogenized tissues from an explant CF lung mirrored responses of a Pseudomonas aeruginosa pure culture, supporting evidence that end-stage lungs are dominated by this pathogen. Longitudinal sputum samples taken through two exacerbation events in a single patient showed that a two-unit drop in pH and a 30% increase in gas production occurred in the tubes prior to exacerbation, which was reversed with antibiotic treatment. Microbial community profiles obtained through amplification and sequencing of the 16S rRNA gene showed that fermentative anaerobes became more abundant during exacerbation and were then reduced during treatment where P. aeruginosa became the dominant bacterium. Results from the WinCF experiments support the model where two functionally different CF microbial communities exist, the persistent Climax Community and the acute Attack Community. Fermentative anaerobes are hypothesized to be the core members of the Attack Community and production of acidic and gaseous products from fermentation may drive developing exacerbations. Treatment targeting the Attack Community may better resolve exacerbations and resulting lung damage.


Assuntos
Bactérias Anaeróbias/metabolismo , Fibrose Cística/microbiologia , Fermentação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Técnicas Bacteriológicas , Humanos , Pulmão/microbiologia , Pseudomonas aeruginosa/genética , Escarro/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...