Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37235351

RESUMO

Equine-derived antitoxin (BAT®) is the only treatment for botulism from botulinum neurotoxin serotype G (BoNT/G). BAT® is a foreign protein with potentially severe adverse effects and is not renewable. To develop a safe, more potent, and renewable antitoxin, humanized monoclonal antibodies (mAbs) were generated. Yeast displayed single chain Fv (scFv) libraries were prepared from mice immunized with BoNT/G and BoNT/G domains and screened with BoNT/G using fluorescence-activated cell sorting (FACS). Fourteen scFv-binding BoNT/G were isolated with KD values ranging from 3.86 nM to 103 nM (median KD 20.9 nM). Five mAb-binding non-overlapping epitopes were humanized and affinity matured to create antibodies hu6G6.2, hu6G7.2, hu6G9.1, hu6G10, and hu6G11.2, with IgG KD values ranging from 51 pM to 8 pM. Three IgG combinations completely protected mice challenged with 10,000 LD50s of BoNT/G at a total mAb dose of 6.25 µg per mouse. The mAb combinations have the potential for use in the diagnosis and treatment of botulism due to serotype G and, along with antibody combinations to BoNT/A, B, C, D, E, and F, provide the basis for a fully recombinant heptavalent botulinum antitoxin to replace the legacy equine product.


Assuntos
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Anticorpos de Cadeia Única , Camundongos , Animais , Cavalos , Anticorpos Monoclonais , Botulismo/prevenção & controle , Saccharomyces cerevisiae/metabolismo , Imunoglobulina G
2.
PLoS One ; 17(9): e0273512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048906

RESUMO

Generating specific monoclonal antibodies (mAbs) that neutralize multiple antigen variants is challenging. Here, we present a strategy to generate mAbs that bind seven subtypes of botulinum neurotoxin serotype F (BoNT/F) that differ from each other in amino acid sequence by up to 36%. Previously, we identified 28H4, a mouse mAb with poor cross-reactivity to BoNT/F1, F3, F4, and F6 and with no detectable binding to BoNT/F2, F5, or F7. Using multicolor labeling of the different BoNT/F subtypes and fluorescence-activated cell sorting (FACS) of yeast displayed single-chain Fv (scFv) mutant libraries, 28H4 was evolved to a humanized mAb hu6F15.4 that bound each of seven BoNT/F subtypes with high affinity (KD 5.81 pM to 659.78 pM). In contrast, using single antigen FACS sorting, affinity was increased to the subtype used for sorting but with a decrease in affinity for other subtypes. None of the mAb variants showed any binding to other BoNT serotypes or to HEK293 or CHO cell lysates by flow cytometry, thus demonstrating stringent BoNT/F specificity. Multicolor FACS-mediated antibody library screening is thus proposed as a general method to generate multi-specific antibodies to protein subtypes such as toxins or species variants.


Assuntos
Anticorpos Monoclonais Humanizados , Toxinas Botulínicas , Citometria de Fluxo , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Toxinas Botulínicas/imunologia , Reações Cruzadas , Citometria de Fluxo/métodos , Células HEK293 , Anticorpos de Cadeia Única/química
3.
Toxins (Basel) ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34564645

RESUMO

Human botulism can be caused by botulinum neurotoxin (BoNT) serotypes A to G. Here, we present an antibody-based antitoxin composed of four human monoclonal antibodies (mAbs) against BoNT/C, BoNT/D, and their mosaic toxins. This work built on our success in generating protective mAbs to BoNT /A, B and E serotypes. We generated mAbs from human immune single-chain Fv (scFv) yeast-display libraries and isolated scFvs with high affinity for BoNT/C, BoNT/CD, BoNT/DC and BoNT/D serotypes. We identified four mAbs that bound non-overlapping epitopes on multiple serotypes and mosaic BoNTs. Three of the mAbs underwent molecular evolution to increase affinity. A four-mAb combination provided high-affinity binding and BoNT neutralization of both serotypes and their mosaic toxins. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing and neutralizing BoNT/C and BoNT/D serotypes and their mosaic toxins. A derivative of the four-antibody combination (NTM-1634) completed a Phase 1 clinical trial (Snow et al., Antimicrobial Agents and Chemotherapy, 2019) with no drug-related serious adverse events.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Toxinas Botulínicas/imunologia , Animais , Botulismo/imunologia , Feminino , Humanos , Camundongos , Sorogrupo
4.
Toxins (Basel) ; 12(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31877649

RESUMO

BACKGROUND: Botulinum neurotoxins (BoNTs) comprise seven agreed-on serotypes, A through G. In 2014, a novel chimeric neurotoxin produced by clostridial strain IBCA10-7060 was reported as BoNT/H, with subsequent names of BoNT/FA or BoNT/HA based on sequence homology of the N-terminus to BoNT/F, the C-terminus to BoNT/A and neutralization studies. The purpose of this study was to define the immunologic identity of the novel BoNT. METHODS: monoclonal antibodies (mAbs) to the novel BoNT/H N-terminus were generated by antibody repertoire cloning and yeast display after immunization with BoNT/H LC-HN or BoNT/F LC-HN. RESULTS: 21 unique BoNT/H LC-HN mAbs were obtained; 15 from the BoNT/H LC-HN immunized library (KD 0.78 nM to 182 nM) and six from the BoNT/F-immunized libraries (KD 20.5 nM to 1490 nM). A total of 15 of 21 mAbs also bound catalytically inactive BoNT/H holotoxin. The mAbs bound nine non-overlapping epitopes on the BoNT/H LC-HN. None of the mAbs showed binding to BoNT serotypes A-G, nor any of the seven subtypes of BoNT/F, except for one mAb that weakly bound BoNT/F5. CONCLUSIONS: The results, combined with the chimeric structure and neutralization by anti-A, but not anti-F antitoxin indicate that immunologically the novel BoNT is BoNT/HA. This determination has significant implications for existing countermeasures and potential vulnerabilities.


Assuntos
Toxinas Botulínicas/toxicidade , Clostridium botulinum/metabolismo , Animais , Anticorpos Monoclonais/química , Toxinas Botulínicas/imunologia , Clonagem Molecular , Epitopos/imunologia , Imunização , Imunoquímica , Camundongos , Patentes como Assunto
5.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31591130

RESUMO

Botulism is caused by botulinum neurotoxin (BoNT), the most poisonous substance known. BoNTs are also classified as Tier 1 biothreat agents due to their high potency and lethality. The existence of seven BoNT serotypes (A-G), which differ between 35% to 68% in amino acid sequence, necessitates the development of serotype specific countermeasures. We present results of a Phase 1 clinical study of an anti-toxin to BoNT serotypes C and D, NTM-1634, which consists of an equimolar mixture of four fully human IgG1 monoclonal antibodies (mAbs), each binding to non-overlapping epitopes on BoNT serotypes C and D resulting in potent toxin neutralization in rodents. This first-in-human study evaluated the safety and pharmacokinetics of escalating doses of NTM-1634 administered intravenously to healthy adults (NCT03046550). Three cohorts of eight healthy subjects received a single intravenous dose of NTM-1634 or placebo at 0.33 mg/kg, 0.66 mg/kg or 1 mg/kg. Follow-up examinations and pharmacokinetic evaluations were continued up to 121 days post-infusion. Subjects were monitored using physical examinations, hematology and chemistry blood tests, and electrocardiograms. Pharmacokinetic parameters were estimated using noncompartmental methods. The results demonstrated that the materials were safe and well-tolerated with the expected half-lives for human mAbs and with minimal anti-drug antibodies detected over the dose ranges and duration of the study.

6.
JCI Insight ; 3(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333313

RESUMO

TGF-ß is a promising immunotherapeutic target. It is expressed ubiquitously in a latent form that must be activated to function. Determination of where and how latent TGF-ß (L-TGF-ß) is activated in the tumor microenvironment could facilitate cell- and mechanism-specific approaches to immunotherapeutically target TGF-ß. Binding of L-TGF-ß to integrin αvß8 results in activation of TGF-ß. We engineered and used αvß8 antibodies optimized for blocking or detection, which - respectively - inhibit tumor growth in syngeneic tumor models or sensitively and specifically detect ß8 in human tumors. Inhibition of αvß8 potentiates cytotoxic T cell responses and recruitment of immune cells to tumor centers - effects that are independent of PD-1/PD-L1. ß8 is expressed on the cell surface at high levels by tumor cells, not immune cells, while the reverse is true of L-TGF-ß, suggesting that tumor cell αvß8 serves as a platform for activating cell-surface L-TGF-ß presented by immune cells. Transcriptome analysis of tumor-associated lymphoid cells reveals macrophages as a key cell type responsive to ß8 inhibition with major increases in chemokine and tumor-eliminating genes. High ß8 expression in tumor cells is seen in 20%-80% of various cancers, which rarely coincides with high PD-L1 expression. These data suggest tumor cell αvß8 is a PD-1/PD-L1-independent immunotherapeutic target.


Assuntos
Integrinas/metabolismo , Macrófagos/imunologia , Neoplasias/imunologia , Fator de Crescimento Transformador beta/metabolismo , Evasão Tumoral/imunologia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Modelos Animais de Doenças , Feminino , Humanos , Integrinas/antagonistas & inibidores , Estimativa de Kaplan-Meier , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Protein Expr Purif ; 149: 75-83, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29655788

RESUMO

Expression variation among antibodies produced by stably transfected Chinese Hamster Ovary (CHO) cells is well established. While developing CHO-K1 cell lines, we encountered a human monoclonal antibody, mAb B-c, with severe manufacturability issues, including very poor expression and high levels of heavy chain (HC) dimer and high molecular weight aggregates. Using transient expression in CHO-K1 cells, we identified light chain (LC) as the source of the manufacturability issues for this antibody. While other antibodies achieved optimal expression at 1:1 or 2:1 LC to HC ratios, mAb B-c required up to a 6:1 LC:HC for maximal expression, which was still significantly lower than that for other tested antibodies. To overcome the manufacturability issues, LC shuffling was performed with the original HC to select antibodies with unique LCs which retained acceptable binding affinities. Transient CHO-K1 expression evaluation of the new LCs co-expressed with the original HC identified antibodies with high expression at a 1:1 or 2:1 LC:HC; the expression levels of these new antibodies were comparable to those of other well-expressed antibodies. Expression of these new antibodies in stably transfected CHO-K1 cells confirmed these results. In addition, antibodies containing the new LCs had very low levels of high molecular weight aggregates and HC dimer. These results demonstrate that certain antibody manufacturability issues can be attributed to LC and that engineering antibodies by pairing HCs with alternate LCs can improve antibody expression and product quality while maintaining or improving affinity.


Assuntos
Anticorpos Monoclonais Humanizados/biossíntese , Engenharia de Proteínas/métodos , Animais , Anticorpos Monoclonais Humanizados/genética , Células CHO , Cricetulus , Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/biossíntese , Cadeias Leves de Imunoglobulina/genética , Conformação Proteica , Multimerização Proteica , Transfecção
8.
Toxins (Basel) ; 10(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494481

RESUMO

Human botulism is most commonly caused by botulinum neurotoxin (BoNT) serotypes A, B, and E. For this work, we sought to develop a human monoclonal antibody (mAb)-based antitoxin capable of binding and neutralizing multiple subtypes of BoNT/E. Libraries of yeast-displayed single chain Fv (scFv) antibodies were created from the heavy and light chain variable region genes of humans immunized with pentavalent-toxoid- and BoNT/E-binding scFv isolated by Fluorescence-Activated Cell Sorting (FACS). A total of 10 scFv were isolated that bound one or more BoNT/E subtypes with nanomolar-level equilibrium dissociation constants (KD). By diversifying the V-regions of the lead mAbs and selecting for cross-reactivity, we generated three scFv that bound all four BoNT/E subtypes tested at three non-overlapping epitopes. The scFvs were converted to IgG that had KD values for the different BoNT/E subtypes ranging from 9.7 nM to 2.28 pM. An equimolar combination of the three mAbs was able to potently neutralize BoNT/E1, BoNT/E3, and BoNT/E4 in a mouse neutralization assay. The mAbs have potential utility as therapeutics and as diagnostics capable of recognizing multiple BoNT/E subtypes. A derivative of the three-antibody combination (NTM-1633) is in pre-clinical development with an investigational new drug (IND) application filing expected in 2018.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Toxinas Botulínicas/imunologia , Combinação de Medicamentos , Epitopos , Humanos
9.
Toxins (Basel) ; 10(2)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462889

RESUMO

The standard of treatment for botulism, equine antitoxin, is a foreign protein with associated safety issues and a short serum half-life which excludes its use as a prophylactic antitoxin and makes it a less-than-optimal therapeutic. Due to these limitations, a recombinant monoclonal antibody (mAb) product is preferable. It has been shown that combining three mAbs that bind non-overlapping epitopes leads to highly potent botulinum neurotoxin (BoNT) neutralization. Recently, a triple human antibody combination for BoNT/A has demonstrated potent toxin neutralization in mouse models with no serious adverse events when tested in a Phase I clinical trial. However, a triple antibody therapeutic poses unique development and manufacturing challenges. Thus, potentially to streamline development of BoNT antitoxins, we sought to achieve the potency of multiple mAb combinations in a single IgG-based molecule that has a long serum half-life. The design, production, and testing of a single tri-epitopic IgG1-based mAb (TeAb) containing the binding sites of each of the three parental BoNT/A mAbs yielded an antibody of nearly equal potency to the combination. The approach taken here could be applied to the design and creation of other multivalent antibodies that could be used for a variety of applications, including toxin elimination.


Assuntos
Anticorpos Monoclonais/imunologia , Toxinas Botulínicas Tipo A/imunologia , Epitopos/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/farmacologia , Células CHO , Cricetulus , Feminino , Camundongos , Neurônios/metabolismo , Testes de Neutralização , Ratos
10.
PLoS One ; 12(3): e0174187, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28323873

RESUMO

Human botulism is primarily caused by botulinum neurotoxin (BoNT) serotypes A, B and E, with around 1% caused by serotype F (BoNT/F). BoNT/F comprises at least seven different subtypes with the amino acid sequence difference between subtypes as high as 36%. The sequence differences present a significant challenge for generating monoclonal antibodies (mAbs) that can bind, detect and neutralize all BoNT/F subtypes. We used repertoire cloning of immune mouse antibody variable (V) regions and yeast display to generate a panel of 33 lead single chain Fv (scFv) mAbs that bound one or more BoNT/F subtypes with a median equilibrium dissociation constant (KD) of 4.06 × 10-9 M. By diversifying the V-regions of the lead mAbs and selecting for cross reactivity we generated five mAbs that bound each of the seven subtypes. Three scFv binding non-overlapping epitopes were converted to IgG that had KD for the different BoNT/F subtypes ranging from 2.2×10-8 M to 1.47×10-12 pM. An equimolar combination of the mAbs was able to potently neutralize BoNT/F1, F2, F4 and F7 in the mouse neutralization assay. The mAbs have potential utility as diagnostics capable of recognizing the known BoNT/F subtypes and could be developed as antitoxins to prevent and treat type F botulism.


Assuntos
Anticorpos Monoclonais/imunologia , Antitoxinas/imunologia , Toxinas Botulínicas/imunologia , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Animais , Antitoxinas/genética , Botulismo/diagnóstico , Botulismo/terapia , Domínio Catalítico/imunologia , Clostridium botulinum/metabolismo , Reações Cruzadas/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Escherichia coli/genética , Imunização , Camundongos , Saccharomyces cerevisiae/genética , Anticorpos de Cadeia Única/genética
11.
J Infect Dis ; 213(10): 1606-14, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26936913

RESUMO

BACKGROUND: Only Clostridium botulinum strain IBCA10-7060 produces the recently described novel botulinum neurotoxin type H (BoNT/H). BoNT/H (N-terminal two-thirds most homologous to BoNT/F and C-terminal one-third most homologous to BoNT/A) requires antitoxin to toxin ratios ≥1190:1 for neutralization by existing antitoxins. Hence, more potent and safer antitoxins against BoNT/H are needed. METHODS: We therefore evaluated our existing monoclonal antibodies (mAbs) to BoNT/A and BoNT/F for BoNT/H binding, created yeast-displayed mutants to select for higher-affinity-binding mAbs by using flow cytometry, and evaluated the mAbs' ability to neutralize BoNT/H in the standard mouse bioassay. RESULTS: Anti-BoNT/A HCC-binding mAbs RAZ1 and CR2 bound BoNT/H with high affinity. However, only 1 of 6 BoNT/F mAbs (4E17.2A) bound BoNT/H but with an affinity >800-fold lower (equilibrium dissociation binding constant [KD] = 7.56 × 10(-8)M) than its BoNT/F affinity (KD= 9.1 × 10(-11)M), indicating that the N-terminal two-thirds of BoNT/H is immunologically unique. The affinity of 4E17.2A for BoNT/H was increased >500-fold to KD= 1.48 × 10(-10)M (mAb 4E17.2D). A combination of mAbs RAZ1, CR2, and 4E17.2D completely protected mice challenged with 280 mouse median lethal doses of BoNT/H at a mAb dose as low as 5 µg of total antibody. CONCLUSIONS: This 3-mAb combination potently neutralized BoNT/H and represents a potential human antitoxin that could be developed for the prevention and treatment of type H botulism.


Assuntos
Anticorpos Monoclonais/imunologia , Antitoxinas/imunologia , Toxinas Botulínicas/imunologia , Botulismo/imunologia , Clostridium botulinum/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Toxinas Botulínicas/química , Botulismo/tratamento farmacológico , Botulismo/prevenção & controle , Modelos Animais de Doenças , Cabras , Cavalos , Humanos , Camundongos
12.
Toxins (Basel) ; 7(9): 3405-23, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26343720

RESUMO

Existing antibodies (Abs) used to treat botulism cannot enter the cytosol of neurons and bind to botulinum neurotoxin (BoNT) at its site of action, and thus cannot reverse paralysis. However, Abs targeting the proteolytic domain of the toxin could inhibit the proteolytic activity of the toxin intracellularly and potentially reverse intoxication, if they could be delivered intracellularly. As such, antibodies that neutralize toxin activity could serve as potent inhibitory cargos for therapeutic antitoxins against botulism. BoNT serotype B (BoNT/B) contains a zinc endopeptidase light chain (LC) domain that cleaves synaoptobrevin-2, a SNARE protein responsible for vesicle fusion and acetylcholine vesicle release. To generate monoclonal Abs (mAbs) that could reverse paralysis, we targeted the protease domain for Ab generation. Single-chain variable fragment (scFv) libraries from immunized mice or humans were displayed on yeast, and 19 unique BoNT/B LC-specific mAbs isolated by fluorescence-activated cell sorting (FACS). The equilibrium dissociation constants (KD) of these mAbs for BoNT/B LC ranged from 0.24 nM to 14.3 nM (mean KD 3.27 nM). Eleven mAbs inhibited BoNT/B LC proteolytic activity. The fine epitopes of selected mAbs were identified by alanine-scanning mutagenesis, revealing that inhibitory mAbs bound near the active site, substrate-binding site or the extended substrate-binding site. The results provide mAbs that could prove useful for intracellular reversal of paralysis and identify epitopes that could be targeted by small molecules inhibitors.


Assuntos
Anticorpos Monoclonais/imunologia , Toxinas Botulínicas Tipo A/toxicidade , Animais , Antitoxinas/imunologia , Toxinas Botulínicas Tipo A/imunologia , Epitopos/imunologia , Feminino , Citometria de Fluxo , Concentração Inibidora 50 , Camundongos , Conformação Proteica , Proteólise , Proteínas SNARE/metabolismo , Anticorpos de Cadeia Única/metabolismo
13.
PLoS One ; 10(8): e0135306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26275214

RESUMO

The paralytic disease botulism is caused by botulinum neurotoxins (BoNT), multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC) of BoNT serotype A (BoNT/A) was targeted for generation of monoclonal antibodies (mAbs) that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv) libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS). Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10-11 M to 3.53×10-8 M (mean KD 5.38×10-9 M and median KD 1.53×10-9 M), as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10-9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors.


Assuntos
Anticorpos Monoclonais/imunologia , Antitoxinas/imunologia , Toxinas Botulínicas Tipo A/imunologia , Neurotoxinas/imunologia , Anticorpos de Cadeia Única/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antitoxinas/química , Antitoxinas/metabolismo , Catálise , Mapeamento de Epitopos , Feminino , Humanos , Camundongos , Estrutura Terciária de Proteína , Sorogrupo
14.
Mol Cancer Ther ; 11(7): 1467-76, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22564724

RESUMO

Aberrant expression and activation of EGF receptor (EGFR) has been implicated in the development and progression of many human cancers. As such, targeted therapeutic inhibition of EGFR, for example by antibodies, is a promising anticancer strategy. The overall efficacy of antibody therapies results from the complex interplay between affinity, valence, tumor penetration and retention, and signaling inhibition. To gain better insight into this relationship, we studied a panel of EGFR single-chain Fv (scFv) antibodies that recognize an identical epitope on EGFR but bind with intrinsic monovalent affinities varying by 280-fold. The scFv were converted to Fab and IgG formats, and investigated for their ability to bind EGFR, compete with EGF binding, and inhibit EGF-mediated downstream signaling and proliferation. We observed that the apparent EGFR-binding affinity for bivalent IgG plateaus at intermediate values of intrinsic affinity of the cognate Fab, leading to a biphasic curve describing the ratio of IgG to Fab affinity. Mathematical modeling of antibody-receptor binding indicated that the biphasic effect results from nonequilibrium assay limitations. This was confirmed by further observation that the potency of EGF competition for antibody binding to EGFR improved with both intrinsic affinity and antibody valence. Similarly, both higher intrinsic affinity and bivalent binding improved the potency of antibodies in blocking cellular signaling and proliferation. Overall, our work indicates that higher intrinsic affinity combined with bivalent binding can achieve avidity that leads to greater in vitro potency of antibodies, which may translate into greater therapeutic efficacy.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos/imunologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/genética , Expressão Gênica , Humanos , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/imunologia
15.
J Biol Chem ; 286(51): 44218-44233, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22002064

RESUMO

A potent neutralizing antibody to a conserved hepatitis C virus (HCV) epitope might overcome its extreme variability, allowing immunotherapy. The human monoclonal antibody HC-1 recognizes a conformational epitope on the HCV E2 glycoprotein. Previous studies showed that HC-1 neutralizes most HCV genotypes but has modest potency. To improve neutralization, we affinity-matured HC-1 by constructing a library of yeast-displayed HC-1 single chain Fv (scFv) mutants, using for selection an E2 antigen from one of the poorly neutralized HCVpp. We developed an approach by parallel mutagenesis of the heavy chain variable (VH) and κ-chain variable (Vk) genes separately, then combining the optimized VH and Vk mutants. This resulted in the generation of HC-1-related scFv variants exhibiting improved affinities. The best scFv variant had a 92-fold improved affinity. After conversion to IgG1, some of the antibodies exhibited a 30-fold improvement in neutralization activity. Both surface plasmon resonance and solution kinetic exclusion analysis showed that the increase in affinity was largely due to a lowering of the dissociation rate constant, Koff. Neutralization against a panel of HCV pseudoparticles and infectious 2a HCV virus improved with the affinity-matured IgG1 antibodies. Interestingly, some of these antibodies neutralized a viral isolate that was not neutralized by wild-type HC-1. Moreover, propagating 2a HCVcc under the selective pressure of WT HC-1 or affinity-matured HC-1 antibodies yielded no viral escape mutants and, with the affinity-matured IgG1, needed 100-fold less antibody to achieve complete virus elimination. Taken together, these findings suggest that affinity-matured HC-1 antibodies are excellent candidates for therapeutic development.


Assuntos
Anticorpos Monoclonais/química , Hepacivirus/metabolismo , Testes de Neutralização/métodos , Anticorpos/química , Afinidade de Anticorpos , Separação Celular , Epitopos/química , Células HEK293 , Hepacivirus/imunologia , Humanos , Fragmentos de Imunoglobulinas/química , Imunoglobulina G/química , Imunoterapia/métodos , Cinética , Microscopia de Fluorescência/métodos , Mutação
16.
J Mol Biol ; 397(4): 1106-18, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20138889

RESUMO

Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K(d)) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K(d) for BoNT/A Lc of 1.47 x 10(-)(10) M and an IC(50) (50% inhibitory concentration) of 4.7 x 10(-)(10) M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 A resolution. The structure reveals that the Aa1 VHH binds in the alpha-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc alpha-exosite as a target for inhibitor development.


Assuntos
Antitoxinas/metabolismo , Toxinas Botulínicas/antagonistas & inibidores , Animais , Antitoxinas/química , Antitoxinas/genética , Camelídeos Americanos , Cristalografia por Raios X , Temperatura Alta , Concentração Inibidora 50 , Cinética , Ligação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
17.
J Mol Med (Berl) ; 87(5): 507-14, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19219419

RESUMO

Transition from hormone-sensitive to hormone-refractory metastatic tumor types poses a major challenge for prostate cancer treatment. Tumor antigens that are differentially expressed during this transition are likely to play important roles in imparting prostate cancer cells with the ability to grow in a hormone-deprived environment and to metastasize to distal sites such as the bone and thus, are likely targets for therapeutic intervention. To identify those molecules and particularly cell surface antigens that accompany this transition, we studied the changes in cell surface antigenic profiles between a hormone-sensitive prostate cancer line LNCaP and its hormone-refractory derivative C4-2B, using an antibody library-based affinity proteomic approach. We selected a naive phage antibody display library to identify human single-chain antibodies that bind specifically to C4-2B but not LNCaP. Using mass spectrometry, we identified one of the antibody-targeted antigens as the ICAM-1/CD54/human rhinovirus receptor. Recombinant IgG1 derived from this single-chain antibody binds to a neutralizing epitope of ICAM-1 and blocks C4-2B cell invasion through extracellular matrix in vitro. ICAM-1 is thus differentially expressed during the transition of the hormone-sensitive prostate cancer cell line LNCaP to its hormone-refractory derivative C4-2B, plays an important role in imparting the C4-2B line with the ability to invade, and may therefore be a target for therapeutic intervention.


Assuntos
Anticorpos/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Superfície/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Animais , Antineoplásicos Hormonais/uso terapêutico , Células CHO , Linhagem Celular Tumoral , Movimento Celular/imunologia , Cricetinae , Cricetulus , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Humanos , Fragmentos de Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Molécula 1 de Adesão Intercelular/genética , Masculino , Invasividade Neoplásica , Biblioteca de Peptídeos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Ligação Proteica , Transfecção
18.
Mol Cancer Ther ; 6(10): 2737-46, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17938267

RESUMO

Targeted delivery of small-molecule drugs has the potential to enhance selective killing of tumor cells. We have identified previously an internalizing single chain [single chain variable fragment (scFv)] antibody that targets prostate cancer cells and identified the target antigen as CD166. We report here the development of immunoliposomes using this anti-CD166 scFv (H3). We studied the effects of a panel of intracellularly delivered, anti-CD166 immunoliposomal small-molecule drugs on prostate cancer cells. Immunoliposomal formulations of topotecan, vinorelbine, and doxorubicin each showed efficient and targeted uptake by three prostate cancer cell lines (Du-145, PC3, and LNCaP). H3-immunoliposomal topotecan was the most effective in cytotoxicity assays on all three tumor cell lines, showing improved cytotoxic activity compared with nontargeted liposomal topotecan. Other drugs such as liposomal doxorubicin were highly effective against LNCaP but not PC3 or Du-145 cells, despite efficient intracellular delivery. Post-internalization events thus modulate the overall efficacy of intracellularly delivered liposomal drugs, contributing in some cases to the lower than expected activity in a cell line-dependent manner. Further studies on intracellular tracking of endocytosed liposomal drugs will help identify and overcome the barriers limiting the potency of liposomal drugs.


Assuntos
Molécula de Adesão de Leucócito Ativado/imunologia , Anticorpos Monoclonais/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias da Próstata/tratamento farmacológico , Antibióticos Antineoplásicos/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Comunicação Celular/imunologia , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Citometria de Fluxo , Humanos , Fragmentos de Imunoglobulinas/imunologia , Ligantes , Lipossomos , Masculino , Neoplasias da Próstata/patologia , Radiossensibilizantes/administração & dosagem , Topotecan/administração & dosagem , Vimblastina/administração & dosagem , Vimblastina/análogos & derivados , Vinorelbina
19.
J Mol Med (Berl) ; 85(10): 1113-23, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17554518

RESUMO

We have used a naive human single-chain fragment variable (scFv) library as a source of random shape repertoire to directly probe the altered surface chemistry of tumor cells. We reported previously the identification of more than 90 internalizing phage monoclonal antibodies targeting prostate cancer cells, including those that are hormone refractory. In this report, we describe the conversion of a panel of those scFvs into full-length human immunoglobulins (IgGs) and show that tumor specificity is retained. We have further shown that antibodies isolated from a naive phage display library can nevertheless be of high affinity towards target tumor cells. In addition, full-length IgGs retain the functionality of parental scFvs including the ability to rapidly enter target cells through receptor-mediated endocytosis and thereby to mediate efficient and specific intracellular payload delivery to tumor cells. We have used recombinant IgGs to immunoprecipitate target antigens and analyzed their molecular composition by mass spectrometry. We have identified one target antigen as activated leukocyte cell adhesion molecule (ALCAM)/MEMD/CD166 and have further studied tissue specificity of this internalizing ALCAM epitope by immunohistochemistry. Our study shows that cell type-specific internalizing human antibody can be readily identified from a naive phage antibody display library, characterized with regards to sequence, affinity, tissue specificity, and antigen identity, and modified genetically and chemically to generate various forms of targeted therapeutics.


Assuntos
Anticorpos Antineoplásicos/imunologia , Carcinoma/imunologia , Imunoglobulina G/imunologia , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/imunologia , Molécula de Adesão de Leucócito Ativado/imunologia , Molécula de Adesão de Leucócito Ativado/isolamento & purificação , Sequência de Aminoácidos , Animais , Anticorpos Antineoplásicos/administração & dosagem , Células CHO , Carcinoma/patologia , Carcinoma/terapia , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Endocitose/efeitos dos fármacos , Humanos , Imunoglobulina G/administração & dosagem , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Imuno-Histoquímica , Imunoprecipitação , Imunoterapia/métodos , Lipossomos , Masculino , Espectrometria de Massas , Biblioteca de Peptídeos , Antígeno Prostático Específico/isolamento & purificação , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia
20.
Cancer Res ; 64(2): 704-10, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14744788

RESUMO

The identification of tumor-specific cell surface antigens is a critical step toward the development of targeted therapeutics for cancer. The epitope space at the tumor cell surface is highly complex, composed of proteins, carbohydrates, and other membrane-associated determinants including post-translational modification products, which are difficult to probe by approaches based on gene expression. This epitope space can be efficiently mapped by complementary monoclonal antibodies. By selecting human antibody gene diversity libraries directly on the surface of prostate cancer cells, we have taken a functional approach to identifying fully human, tumor-specific monoclonal antibodies without prior knowledge of their target antigens. Selection conditions have been optimized to favor tumor-specific antibody binding and internalization. To date, we have discovered >90 monoclonal antibodies that specifically bind and enter prostate cancer cells, with little or no binding to control cells. These antibodies are able to efficiently deliver intracellular payloads when attached to nanoparticles such as liposomes. In addition, a subset of the antibodies displayed intrinsic antiproliferative activity. These tumor-specific internalizing antibodies are likely to be useful for targeted therapeutics either alone or in combination with effector molecules. The antigens they bind constitute a tumor-specific internalizing epitope space that is likely to play a significant role in cancer cell homeostasis. Targeting components of this epitope space may facilitate development of immunotherapeutic and small molecule-based strategies as well as the use of other therapeutic agents that rely upon delivery to the interior of the tumor cell.


Assuntos
Epitopos/análise , Biblioteca de Peptídeos , Neoplasias da Próstata/imunologia , Anticorpos Antineoplásicos , Divisão Celular/imunologia , Linhagem Celular Tumoral , Endocitose , Humanos , Fragmentos de Imunoglobulinas , Masculino , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...