Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Infect Dis ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874098

RESUMO

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Co-infection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G and K540E) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in two previously little-studied countries.

3.
Lancet Infect Dis ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38552654

RESUMO

Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.

4.
Nat Rev Microbiol ; 22(6): 373-384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38321292

RESUMO

Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Malária Falciparum/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , África/epidemiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Mutação
6.
Antimicrob Agents Chemother ; 68(4): e0153423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411062

RESUMO

Malaria remains a leading cause of morbidity and mortality in Burkina Faso, which utilizes artemether-lumefantrine as the principal therapy to treat uncomplicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine-pyrimethamine plus amodiaquine in children during the transmission season. Monitoring the activities of available antimalarial drugs is a high priority. We assessed the ex vivo susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to characterize known drug resistance-mediating polymorphisms. Isolates were generally susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 7.9-24), monodesethylamodiaquine (22, 14-46) piperaquine (6.1, 3.6-9.2), pyronaridine (3.0, 1.3-5.5), quinine (50, 30-75), mefloquine (7.1, 3.7-10), lumefantrine (7.1, 4.5-12), dihydroartemisinin (3.7, 2.2-5.5), and atovaquone (0.2, 0.1-0.3) and mostly resistant to cycloguanil (850, 543-1,290) and pyrimethamine (33,200, 18,400-54,200), although a small number of outliers were seen. Considering genetic markers of resistance to aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y (95%) sequences. For markers of resistance to antifolates, established PfDHFR and PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate artemisinin partial resistance were not detected. Overall, our results suggest excellent susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance to antifolates used to prevent malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Criança , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia , Burkina Faso , Artemeter/uso terapêutico , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Malária/tratamento farmacológico , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Combinação de Medicamentos , Polimorfismo Genético/genética , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
7.
N Engl J Med ; 389(8): 722-732, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37611122

RESUMO

BACKGROUND: Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS: We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 (pfk13) and analyzed relatedness using molecular methods. We assessed malaria metrics longitudinally in eight Ugandan districts from 2014 through 2021. RESULTS: By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS: Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.).


Assuntos
Artemisininas , Resistência a Medicamentos , Malária , Parasitos , Proteínas de Protozoários , Animais , Humanos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Benchmarking , Parasitos/efeitos dos fármacos , Parasitos/genética , Uganda/epidemiologia , Resistência a Medicamentos/genética , Malária/tratamento farmacológico , Malária/genética , Malária/parasitologia , Proteínas de Protozoários/genética
8.
J Infect Dis ; 228(7): 926-935, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37221018

RESUMO

BACKGROUND: Despite scale-up of seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine (SP-AQ) in children 3-59 months of age in Burkina Faso, malaria incidence remains high, raising concerns regarding SMC effectiveness and selection of drug resistance. Using a case-control design, we determined associations between SMC drug levels, drug resistance markers, and presentation with malaria. METHODS: We enrolled 310 children presenting at health facilities in Bobo-Dioulasso. Cases were SMC-eligible children 6-59 months of age diagnosed with malaria. Two controls were enrolled per case: SMC-eligible children without malaria; and older (5-10 years old), SMC-ineligible children with malaria. We measured SP-AQ drug levels among SMC-eligible children and SP-AQ resistance markers among parasitemic children. Conditional logistic regression was used to compute odds ratios (ORs) comparing drug levels between cases and controls. RESULTS: Compared to SMC-eligible controls, children with malaria were less likely to have any detectable SP or AQ (OR, 0.33 [95% confidence interval, .16-.67]; P = .002) and have lower drug levels (P < .05). Prevalences of mutations mediating high-level SP resistance were rare (0%-1%) and similar between cases and SMC-ineligible controls (P > .05). CONCLUSIONS: Incident malaria among SMC-eligible children was likely due to suboptimal levels of SP-AQ, resulting from missed cycles rather than increased antimalarial resistance to SP-AQ.


Assuntos
Antimaláricos , Malária , Humanos , Criança , Lactente , Pré-Escolar , Burkina Faso/epidemiologia , Estudos de Casos e Controles , Estações do Ano , Malária/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Sulfadoxina/uso terapêutico , Amodiaquina/uso terapêutico , Quimioprevenção/métodos , Combinação de Medicamentos , Resistência a Medicamentos
9.
Microbiol Spectr ; 11(3): e0523622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158739

RESUMO

Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum/genética , Uganda , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária/parasitologia , Resistência a Medicamentos/genética , Ligases , Proteínas de Protozoários/genética
10.
Nat Commun ; 13(1): 6353, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289202

RESUMO

Artemisinin partial resistance may facilitate selection of Plasmodium falciparum resistant to combination therapy partner drugs. We evaluated 99 P. falciparum isolates collected in 2021 from northern Uganda, where resistance-associated PfK13 C469Y and A675V mutations have emerged, and eastern Uganda, where these mutations are uncommon. With the ex vivo ring survival assay, isolates with the 469Y mutation (median survival 7.3% for mutant, 2.5% mixed, and 1.4% wild type) and/or mutations in Pfcoronin or falcipain-2a, had significantly greater survival; all isolates with survival >5% had mutations in at least one of these proteins. With ex vivo growth inhibition assays, susceptibility to lumefantrine (median IC50 14.6 vs. 6.9 nM, p < 0.0001) and dihydroartemisinin (2.3 vs. 1.5 nM, p = 0.003) was decreased in northern vs. eastern Uganda; 14/49 northern vs. 0/38 eastern isolates had lumefantrine IC50 > 20 nM (p = 0.0002). Targeted sequencing of 819 isolates from 2015-21 identified multiple polymorphisms associated with altered drug susceptibility, notably PfK13 469Y with decreased susceptibility to lumefantrine (p = 6 × 10-8) and PfCRT mutations with chloroquine resistance (p = 1 × 10-20). Our results raise concern regarding activity of artemether-lumefantrine, the first-line antimalarial in Uganda.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Uganda , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos/genética , Artemeter/farmacologia , Artemeter/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Combinação de Medicamentos , Proteínas de Protozoários/metabolismo
11.
Antimicrob Agents Chemother ; 66(10): e0081722, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094216

RESUMO

The proteasome is a promising target for antimalarial chemotherapy. We assessed ex vivo susceptibilities of fresh Plasmodium falciparum isolates from eastern Uganda to seven proteasome inhibitors: two asparagine ethylenediamines, two macrocyclic peptides, and three peptide boronates; five had median IC50 values <100 nM. TDI8304, a macrocylic peptide lead compound with drug-like properties, had a median IC50 of 16 nM. Sequencing genes encoding the ß2 and ß5 catalytic proteasome subunits, the predicted targets of the inhibitors, and five additional proteasome subunits, identified two mutations in ß2 (I204T, S214F), three mutations in ß5 (V2I, A142S, D150E), and three mutations in other subunits. The ß2 S214F mutation was associated with decreased susceptibility to two peptide boronates, with IC50s of 181 nM and 2635 nM against mutant versus 62 nM and 477 nM against wild type parasites for MMV1579506 and MMV1794229, respectively, although significance could not be formally assessed due to the small number of mutant parasites with available data. The other ß2 and ß5 mutations and mutations in other subunits were not associated with susceptibility to tested compounds. Against culture-adapted Ugandan isolates, two asparagine ethylenediamines and the peptide proteasome inhibitors WLW-vinyl sulfone and WLL-vinyl sulfone (which were not studied ex vivo) demonstrated low nM activity, without decreased activity against ß2 S214F mutant parasites. Overall, proteasome inhibitors had potent activity against P. falciparum isolates circulating in Uganda, and genetic variation in proteasome targets was uncommon.


Assuntos
Antimaláricos , Plasmodium falciparum , Inibidores de Proteassoma , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Asparagina , Resistência a Medicamentos/genética , Etilenodiaminas/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Uganda
12.
J Infect Dis ; 226(4): 708-713, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-35578987

RESUMO

Achieving malaria elimination requires a better understanding of the transmissibility of human infections in different transmission settings. This study aimed to characterize the human infectious reservoir in a high endemicity setting in eastern Uganda, using gametocyte quantification and mosquito feeding assays. In asymptomatic infections, gametocyte densities were positively associated with the proportion of infected mosquitoes (ß = 1.60; 95% CI, 1.32-1.92; P < .0001). Combining transmissibility and abundance in the population, symptomatic and asymptomatic infections were estimated to contribute to 5.3% and 94.7% of the infectious reservoir, respectively. School-aged children (5-15 years old) contributed to 50.4% of transmission events and were important drivers of malaria transmission.


Assuntos
Anopheles , Linfoma de Burkitt , Malária Falciparum , Malária , Adolescente , Animais , Infecções Assintomáticas/epidemiologia , Criança , Pré-Escolar , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Uganda/epidemiologia
13.
Antimicrob Agents Chemother ; 66(4): e0143721, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35266828

RESUMO

We measured susceptibilities of Ugandan Plasmodium falciparum isolates assayed on the day of collection or after storage at 4°C. Samples were incubated with serial dilutions of 8 antimalarials, and susceptibilities were determined from 72-h growth inhibition assays. Storage was associated with decreased growth and lower 50% inhibitory concentration values, but differences between assays beginning on day 0 or after 1 or 2 days of storage were modest, indicating that short-term storage before drug susceptibility determination is feasible.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Humanos , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Uganda
14.
PLOS Glob Public Health ; 2(3): e0000063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962263

RESUMO

House construction is rapidly modernizing across Africa but the potential benefits for human health are poorly understood. We hypothesised that improvements to housing would be associated with reductions in malaria, acute respiratory infection (ARI) and gastrointestinal illness in an area of low malaria endemicity in Uganda. Data were analysed from a cohort study of male and female child and adult residents (n = 531) of 80 randomly-selected households in Nagongera sub-county, followed for 24 months (October 4, 2017 to October 31, 2019). Houses were classified as modern (brick walls, metal roof and closed eaves) or traditional (all other homes). Light trap collections of mosquitoes were done every two weeks in all sleeping rooms. Every four weeks, we measured malaria infection (using microscopy and qPCR to detect malaria parasites), incidence of malaria, ARI and gastrointestinal illness. We collected 15,780 adult female Anopheles over 7,631 nights. We collected 13,277 blood samples of which 10.2% (1,347) were positive for malaria parasites. Over 958 person years we diagnosed 38 episodes of uncomplicated malaria (incidence 0.04 episodes per person-year at risk), 2,553 episodes of ARI (incidence 2.7 episodes per person-year) and 387 episodes of gastrointestinal illness (incidence 0.4 episodes per person-year). Modern houses were associated with a 53% lower human biting rate compared to traditional houses (adjusted incidence rate ratio [aIRR] 0.47, 95% confidence interval [CI] 0.32-0.67, p<0.001) and a 24% lower incidence of gastrointestinal illness (aIRR 0.76, 95% CI 0.59-0.98, p = 0.04) but no changes in malaria prevalence, malaria incidence nor ARI incidence. House improvements may reduce mosquito-biting rates and gastrointestinal illness among children and adults. For the health sector to leverage Africa's housing modernization, research is urgently needed to identify the healthiest house designs and to assess their effectiveness across a range of epidemiological settings in sub-Saharan Africa.

15.
J Infect Dis ; 225(4): 696-704, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460932

RESUMO

BACKGROUND: The Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors pyrimethamine and cycloguanil (the active metabolite of proguanil) have important roles in malaria chemoprevention, but drug resistance challenges their efficacies. A new compound, P218, was designed to overcome resistance, but drug-susceptibility data for P falciparum field isolates are limited. METHODS: We studied ex vivo PfDHFR inhibitor susceptibilities of 559 isolates from Tororo and Busia districts, Uganda, from 2016 to 2020, sequenced 383 isolates, and assessed associations between genotypes and drug-susceptibility phenotypes. RESULTS: Median half-maximal inhibitory concentrations (IC50s) were 42 100 nM for pyrimethamine, 1200 nM for cycloguanil, 13000 nM for proguanil, and 0.6 nM for P218. Among sequenced isolates, 3 PfDHFR mutations, 51I (100%), 59R (93.7%), and 108N (100%), were very common, as previously seen in Uganda, and another mutation, 164L (12.8%), had moderate prevalence. Increasing numbers of mutations were associated with decreasing susceptibility to pyrimethamine, cycloguanil, and P218, but not proguanil, which does not act directly against PfDHFR. Differences in P218 susceptibilities were modest, with median IC50s of 1.4 nM for parasites with mixed genotype at position 164 and 5.7 nM for pure quadruple mutant (51I/59R/108N/164L) parasites. CONCLUSIONS: Resistance-mediating PfDHFR mutations were common in Ugandan isolates, but P218 retained excellent activity against mutant parasites.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum , Polimorfismo Genético , Proguanil/farmacologia , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Uganda
16.
Lancet Microbe ; 2(9): e441-e449, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34553183

RESUMO

BACKGROUND: Treatment and control of malaria depends on artemisinin-based combination therapies (ACTs) and is challenged by drug resistance, but thus far resistance to artemisinins and partner drugs has primarily occurred in southeast Asia. The aim of this study was to characterise antimalarial drug susceptibility of Plasmodium falciparum isolates from Tororo and Busia districts in Uganda. METHODS: In this prospective longitudinal study, P falciparum isolates were collected from patients aged 6 months or older presenting at the Tororo District Hospital (Tororo district, a site with relatively low malaria incidence) or Masafu General Hospital (Busia district, a high-incidence site) in eastern Uganda with clinical symptoms of malaria, a positive Giemsa-stained blood film for P falciparum, and no signs of severe disease. Ex-vivo susceptibilities to ten antimalarial drugs were measured using a 72-h microplate growth inhibition assay with SYBR Green detection. Relevant P falciparum genetic polymorphisms were characterised by molecular methods. We compared results with those from earlier studies in this region and searched for associations between drug susceptibility and parasite genotypes. FINDINGS: From June 10, 2016, to July 29, 2019, 361 P falciparum isolates were collected in the Busia district and 79 in the Tororo district from 440 participants. Of 440 total isolates, 392 (89%) successfully grew in culture and showed excellent drug susceptibility for chloroquine (median half-maximal inhibitory concentration [IC50] 20·0 nM [IQR 12·0-26·0]), monodesethylamodiaquine (7·1 nM [4·3-8·9]), pyronaridine (1·1 nM [0·7-2·3]), piperaquine (5·6 nM [3·3-8·6]), ferroquine (1·8 nM [1·5-3·3]), AQ-13 (24·0 nM [17·0-32·0]), lumefantrine (5·1 nM [3·2-7·7]), mefloquine (9·5 nM [6·6-13·0]), dihydroartemisinin (1·5 nM [1·0-2·0]), and atovaquone (0·3 nM [0·2-0·4]). Compared with results from our study in 2010-13, significant improvements in susceptibility were seen for chloroquine (median IC50 288·0 nM [IQR 122·0-607·0]; p<0·0001), monodesethylamodiaquine (76·0 nM [44·0-137]; p<0·0001), and piperaquine (21·0 nM [7·6-43·0]; p<0·0001), a small but significant decrease in susceptibility was seen for lumefantrine (3·0 nM [1·1-7·6]; p<0·0001), and no change in susceptibility was seen with dihydroartemisinin (1·3 nM [0·8-2·5]; p=0·64). Chloroquine resistance (IC50>100 nM) was more common in isolates from the Tororo district (11 [15%] of 71), compared with those from the Busia district (12 [4%] of 320; p=0·0017). We showed significant increases between 2010-12 and 2016-19 in the prevalences of wild-type P falciparum multidrug resistance protein 1 (PfMDR1) Asn86Tyr from 60% (391 of 653) to 99% (418 of 422; p<0·0001), PfMDR1 Asp1246Tyr from 60% (390 of 650) to 90% (371 of 419; p<0·0001), and P falciparum chloroquine resistance transporter (PfCRT) Lys76Thr from 7% (44 of 675) to 87% (364 of 417; p<0·0001). INTERPRETATION: Our results show marked changes in P falciparum drug susceptibility phenotypes and genotypes in Uganda during the past decade. These results suggest that additional changes will be seen over time and continued surveillance of susceptibility to key ACT components is warranted. FUNDING: National Institutes of Health and Medicines for Malaria Venture.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Cloroquina/farmacologia , Genótipo , Humanos , Estudos Longitudinais , Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Fenótipo , Plasmodium falciparum/genética , Estudos Prospectivos , Uganda/epidemiologia
17.
Antimicrob Agents Chemother ; 65(10): e0077121, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34339273

RESUMO

Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda, from 2016 to 2019. Median IC50s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many nonsynonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%), and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92, and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild-type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated the presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites.


Assuntos
Antimaláricos , Malária Falciparum , Adenosina Trifosfatases , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Uganda
18.
Malar J ; 20(1): 292, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193148

RESUMO

BACKGROUND: Anti-malarial drug resistance may be limited by decreased fitness in resistant parasites. Important contributors to resistance are mutations in the Plasmodium falciparum putative drug transporter PfMDR1. METHODS: Impacts on in vitro fitness of two common PfMDR1 polymorphisms, N86Y, which is associated with sensitivity to multiple drugs, and Y184F, which has no clear impact on drug sensitivity, were evaluated to study associations between resistance mediators and parasite fitness, measured as relative growth in competitive culture experiments. NF10 P. falciparum lines engineered to represent all PfMDR1 N86Y and Y184F haplotypes were co-cultured for 40 days, and the genetic make-up of the cultures was characterized every 4 days by pyrosequencing. The impacts of culture with anti-malarials on the growth of different haplotypes were also assessed. Lastly, the engineering of P. falciparum containing another common polymorphism, PfMDR1 D1246Y, was attempted. RESULTS: Co-culture results were as follows. With wild type (WT) Y184 fixed (N86/Y184 vs. 86Y/Y184), parasites WT and mutant at 86 were at equilibrium. With mutant 184 F fixed (N86/184F vs. 86Y/184F), mutants at 86 overgrew WT. With WT N86 fixed (N86/Y184 vs. N86/184F), WT at 184 overgrew mutants. With mutant 86Y fixed (86Y/Y184 vs. 86Y/184F), WT and mutant at 86 were at equilibrium. Parasites with the double WT were in equilibrium with the double mutant, but 86Y/Y184 overgrew N86/184F. Overall, WT N86/mutant 184F parasites were less fit than parasites with all other haplotypes. Parasites engineered for another mutation, PfMDR1 1246Y, were unstable in culture, with reversion to WT over time. Thus, the N86 WT is stable when accompanied by the Y184 WT, but incurs a fitness cost when accompanied by mutant 184F. Culturing in the presence of chloroquine favored 86Y mutant parasites and in the presence of lumefantrine favored N86 WT parasites; piperaquine had minimal impact. CONCLUSIONS: These results are consistent with those for Ugandan field isolates, suggest reasons for varied haplotypes, and highlight the interplay between drug pressure and fitness that is guiding the evolution of resistance-mediating haplotypes in P. falciparum.


Assuntos
Antimaláricos/farmacologia , Aptidão Genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium falciparum/genética , Cloroquina/farmacologia , Haplótipos , Lumefantrina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia
19.
Malar J ; 20(1): 4, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33386076

RESUMO

BACKGROUND: Rapid diagnostic tests (RDTs) play a key role in malaria case management. The most widely used RDT identifies Plasmodium falciparum based on immunochromatographic recognition of P. falciparum histidine-rich protein 2 (PfHRP2). Deletion of the paralogous pfhrp2 and pfhrp3 genes leads to false-negative PfHRP2-based RDTs, and has been reported in P. falciparum infections from South America and Africa. However, identification of pfhrp2/pfhrp3 deletions has usually been based only on failure to amplify these genes using PCR, without confirmation based on PfHRP2 protein expression, and understanding of the true prevalence of deletions is incomplete. METHODS: Deletions of pfhrp2/pfhrp3 in blood samples were investigated from cross-sectional surveys in 2012-13 in three regions of varied malaria transmission intensity in Uganda. Samples with positive Giemsa-stained thick blood smears, but negative PfHRP2-based RDTs were evaluated by PCR amplification of conserved subunit ribosomal DNA for Plasmodium species, PCR amplification of pfhrp2 and pfhrp3 genes to identify deletions, and bead-based immunoassays for expression of PfHRP2. RESULTS: Of 3516 samples collected in cross-sectional surveys, 1493 (42.5%) had positive blood smears, of which 96 (6.4%) were RDT-negative. Of these 96 RDT-negative samples, P. falciparum DNA was identified by PCR in 56 (58%) and only non-falciparum plasmodial DNA in 40 (42%). In all 56 P. falciparum-positive samples there was a failure to amplify pfhrp2 or pfhrp3: in 25 (45%) pfhrp2 was not amplified, in 39 (70%) pfhrp3 was not amplified, and in 19 (34%) neither gene was amplified. For the 39 P. falciparum-positive, RDT-negative samples available for analysis of protein expression, PfHRP2 was not identified by immunoassay in only four samples (10.3%); these four samples all had failure to amplify both pfhrp2 and pfhrp3 by PCR. Thus, only four of 96 (4.2%) smear-positive, RDT-negative samples had P. falciparum infections with deletion of pfhrp2 and pfhrp3 confirmed by failure to amplify the genes by PCR and lack of expression of PfHRP2 demonstrated by immunoassay. CONCLUSION: False negative RDTs were uncommon. Deletions in pfhrp2 and pfhrp3 explained some of these false negatives, but most false negatives were not due to deletion of the pfhrp2 and pfhrp3 genes.


Assuntos
Antígenos de Protozoários/genética , Deleção de Genes , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Testes Diagnósticos de Rotina , Humanos , Lactente , Uganda
20.
J Infect Dis ; 223(6): 985-994, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33146722

RESUMO

BACKGROUND: In Uganda, artemether-lumefantrine is recommended for malaria treatment and sulfadoxine-pyrimethamine for chemoprevention during pregnancy, but drug resistance may limit efficacies. METHODS: Genetic polymorphisms associated with sensitivities to key drugs were characterized in samples collected from 16 sites across Uganda in 2018 and 2019 by ligase detection reaction fluorescent microsphere, molecular inversion probe, dideoxy sequencing, and quantitative polymerase chain reaction assays. RESULTS: Considering transporter polymorphisms associated with resistance to aminoquinolines, the prevalence of Plasmodium falciparum chloroquine resistance transporter (PfCRT) 76T decreased, but varied markedly between sites (0-46% in 2018; 0-23% in 2019); additional PfCRT polymorphisms and plasmepsin-2/3 amplifications associated elsewhere with resistance to piperaquine were not seen. For P. falciparum multidrug resistance protein 1, in 2019 the 86Y mutation was absent at all sites, the 1246Y mutation had prevalence ≤20% at 14 of 16 sites, and gene amplification was not seen. Considering mutations associated with high-level sulfadoxine-pyrimethamine resistance, prevalences of P. falciparum dihydrofolate reductase 164L (up to 80%) and dihydropteroate synthase 581G (up to 67%) were high at multiple sites. Considering P. falciparum kelch protein propeller domain mutations associated with artemisinin delayed clearance, prevalence of the 469Y and 675V mutations has increased at multiple sites in northern Uganda (up to 23% and 41%, respectively). CONCLUSIONS: We demonstrate concerning spread of mutations that may limit efficacies of key antimalarial drugs.


Assuntos
Aminoquinolinas , Antimaláricos , Artemisininas , Resistência a Medicamentos , Antagonistas do Ácido Fólico , Plasmodium falciparum/efeitos dos fármacos , Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Feminino , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Gravidez , Prevalência , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...