Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(9): 6945-6970, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38788837

RESUMO

An economic simulation was carried out over 183 milk-producing countries to estimate the global economic impacts of 12 dairy cattle diseases and health conditions: mastitis (subclinical and clinical), lameness, paratuberculosis (Johne's disease), displaced abomasum, dystocia, metritis, milk fever, ovarian cysts, retained placenta, and ketosis (subclinical and clinical). Estimates of disease impacts on milk yield, fertility, and culling were collected from the literature, standardized, meta-analyzed using a variety of methods ranging from simple averaging to random-effects models, and adjusted for comorbidities to prevent overestimation. These comorbidity-adjusted disease impacts were then combined with a set of country-level estimates for lactational incidence or prevalence or both, herd characteristics, and price estimates within a series of Monte Carlo simulations that estimated and valued the economic losses due to these diseases. It was estimated that total annual global losses are US$65 billion (B). Subclinical ketosis, clinical mastitis, and subclinical mastitis were the costliest diseases modeled, resulting in mean annual global losses of approximately US$18B, US$13B, and US$9B, respectively. Estimated global annual losses due to clinical ketosis, displaced abomasum, dystocia, lameness, metritis, milk fever, ovarian cysts, paratuberculosis, and retained placenta were estimated to be US$0.2B, US$0.6B, US$0.6B, US$6B, US$5B, US$0.6B, US$4B, US$4B, and US$3B, respectively. Without adjustment for comorbidities, when statistical associations between diseases were disregarded, mean aggregate global losses would have been overestimated by 45%. Although annual losses were greatest in India (US$12B), the United States (US$8B), and China (US$5B), depending on the measure of losses used (losses as a percentage of gross domestic product, losses per capita, losses as a percentage of gross milk revenue), the relative economic burden of these dairy cattle diseases across countries varied markedly.


Assuntos
Doenças dos Bovinos , Indústria de Laticínios , Mastite Bovina , Bovinos , Animais , Doenças dos Bovinos/economia , Doenças dos Bovinos/epidemiologia , Feminino , Indústria de Laticínios/economia , Mastite Bovina/economia , Mastite Bovina/epidemiologia , Leite/economia , Lactação , Comorbidade , Cetose/veterinária , Cetose/economia , Gravidez
2.
Front Vet Sci ; 11: 1337661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550781

RESUMO

A wide variety of control and surveillance programmes that are designed and implemented based on country-specific conditions exists for infectious cattle diseases that are not regulated. This heterogeneity renders difficult the comparison of probabilities of freedom from infection estimated from collected surveillance data. The objectives of this review were to outline the methodological and epidemiological considerations for the estimation of probabilities of freedom from infection from surveillance information and review state-of-the-art methods estimating the probabilities of freedom from infection from heterogeneous surveillance data. Substantiating freedom from infection consists in quantifying the evidence of absence from the absence of evidence. The quantification usually consists in estimating the probability of observing no positive test result, in a given sample, assuming that the infection is present at a chosen (low) prevalence, called the design prevalence. The usual surveillance outputs are the sensitivity of surveillance and the probability of freedom from infection. A variety of factors influencing the choice of a method are presented; disease prevalence context, performance of the tests used, risk factors of infection, structure of the surveillance programme and frequency of testing. The existing methods for estimating the probability of freedom from infection are scenario trees, Bayesian belief networks, simulation methods, Bayesian prevalence estimation methods and the STOC free model. Scenario trees analysis is the current reference method for proving freedom from infection and is widely used in countries that claim freedom. Bayesian belief networks and simulation methods are considered extensions of scenario trees. They can be applied to more complex surveillance schemes and represent complex infection dynamics. Bayesian prevalence estimation methods and the STOC free model allow freedom from infection estimation at the herd-level from longitudinal surveillance data, considering risk factor information and the structure of the population. Comparison of surveillance outputs from heterogeneous surveillance programmes for estimating the probability of freedom from infection is a difficult task. This paper is a 'guide towards substantiating freedom from infection' that describes both all assumptions-limitations and available methods that can be applied in different settings.

3.
J Chem Inf Model ; 64(6): 1996-2007, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452014

RESUMO

Viruses are a group of widespread organisms that are often responsible for very dangerous diseases, as most of them follow a mechanism to multiply and infect their hosts as quickly as possible. Pathogen viruses also mutate regularly, with the result that measures to prevent virus transmission and recover from the disease caused are often limited. The development of new substances is very time-consuming and highly budgeted and requires the sacrifice of many living organisms. Computational chemistry methods allow faster analysis at a much lower cost and, most importantly, reduce the number of living organisms sacrificed experimentally to a minimum. Ionic liquids (ILs) are a group of chemical compounds that could potentially find a wide range of applications due to their potential virucidal activity. In our study, we conducted a complex computational analysis to predict the antiviral activity of ionic liquids against three surrogate viruses: two nonenveloped viruses, Listeria monocytogenes phage P100 and Escherichia coli phage MS2, and one enveloped virus, Pseudomonas syringae phage Phi6. Based on experimental data of toxic activity (logEC90), we assigned activity classes to 154 ILs. Prediction models were created and validated according to the Organization for Economic Co-operation and Development (OECD) recommendations using the Classification Tree method. Further, we performed an external validation of our models through virtual screening on a set of 1277 theoretically generated ionic liquids and then selected 10 active ionic liquids, which were synthesized to verify their activity against the analyzed viruses. Our study proved the effectiveness and efficiency of computational methods to predict the antiviral activity of ionic liquids. Thus, computational models are a cost-effective alternative approach compared with time-consuming experimental studies where live animals are involved.


Assuntos
Líquidos Iônicos , Animais , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Aprendizado de Máquina , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA